Purpose: We describe the measurement of bound water T ( ) of cortical bone in vitro and in vivo with a 3D adiabatic inversion recovery ultrashort echo time (IR-UTE) Cones sequence using a clinical 3T scanner.

Methods: A series IR-UTE data from 6 repetition times (TRs) with 5 inversion times (TIs) at each TR were acquired from 12 human tibial bone specimens, and data from 4 TRs with 5 TIs at each TR were acquired from the tibial midshafts of 8 healthy volunteers. The pore water nulling point was calculated from exponential fitting of the inversion recovery curve at each TR. Bone specimens and volunteers were then scanned again with the calculated nulling point at each TR. was derived through exponential fitting of data from IR-UTE images acquired at different TRs using the calculated pore water nulling point for each TR.

Results: In vitro pore water nulling TIs were 141.3 ± 11.6, 123.4 ± 8.9, 101.3 ± 6.2, 88.9 ± 5.3, 74.8 ± 4.2, and 59.2 ± 3.9 ms for the 6 TRs of 500, 400, 300, 250, 200, and 150 ms, respectively. In vivo pore water nulling TIs were 132.8 ± 12.8, 110.3 ± 10.0, 80.0 ± 7.2, and 63.9 ± 5.4 ms for the 4 TRs of 400, 300, 200, and 150 ms, respectively. Excellent exponential fitting was achieved for IR-UTE imaging of bound water with pore water nulled at each TR. The mean was 106.9 ± 6.3 ms in vitro and 112.3 ± 16.4 ms in vivo.

Conclusion: Using the 3D IR-UTE Cones with a variable TR/TI approach, of cortical bone was calculated after complete nulling of pore water signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180089PMC
http://dx.doi.org/10.1002/mrm.28140DOI Listing

Publication Analysis

Top Keywords

pore water
24
water nulling
16
bound water
12
cortical bone
12
inversion recovery
12
ir-ute cones
12
nulling point
12
exponential fitting
12
water
9
measurement bound
8

Similar Publications

Molecular Simulation Study of All-Silica Zeolites for the Adsorptive Removal of Airborne Chloroethenes.

Langmuir

January 2025

Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany.

Chloroethenes (CHCl with = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far.

View Article and Find Full Text PDF

Surface Complexation and Packed Bed Mass Transport Models Enable Adsorbent Design for Arsenate and Vanadate Removal.

ACS ES T Eng

October 2024

School of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States of America.

Co-occurrence of metal oxo-anions (e.g., arsenate) in drinking water pose human health risks.

View Article and Find Full Text PDF

Hydrophobic dual-polymer-reinforced graphene composite aerogel for efficient water-oil separation.

RSC Adv

January 2025

Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 P. R. China

Addressing the environmental challenges posed by oil spills and industrial wastewater is critical for sustainable development. Graphene aerogels demonstrate significant potential as highly efficient adsorbents due to their high specific surface area, excellent structural tunability and outstanding chemical stability. Among available fabrication methods, the hydrothermal self-assembly technique stands out for its low cost, high tunability and good scalability.

View Article and Find Full Text PDF

Alkaline fusion is a pivotal process influencing the cost of synthesizing zeolite from coal gangue. This study examined the effects of alkaline fusion temperature ( ), treatment duration ( ) and the NaOH/coal gangue weight ratio ( ) on the composition and properties of the products, as well as their adsorption capacities for Cd ( ) and Pb ( ). Response surface methodology (RSM) was employed to analyze the interactions among these factors, and the adsorption mechanisms for Cd and Pb were investigated using X-ray diffraction, scanning electron microscopy-EDS, Fourier transform infrared, X-ray photoelectron spectroscopy, and N adsorption-desorption techniques.

View Article and Find Full Text PDF

Gas-water distribution is significant in the determination of hydrocarbon accumulation mechanisms in gas reservoirs, especially for the exploitation of tight sandstone reservoirs. One of such examples are the gas reservoirs in the Yishan Slope in China, where the internal relationship between gas-water distribution is poorly understood. The pattern and controlling factors for gas-water distribution in tight sandstones gas reservoirs in the Yishan Slope have been examined from macro (such as sedimentary and anticlinal structures) and micro (such as pore throat size, heterogeneity) perspectives, using data from rock eval pyrolysis, sedimentary structure, sediment diagenesis, gas migration, mercury injection experiments, and well logs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!