Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Integrated water planning and management face multiple challenges, among which are the competing interests of several water-using sectors and changing climatic trends. This paper presents integrated and non-integrated climate-environment-water approaches for reservoir operation, illustrated with Karkhe reservoir, Iran. Reservoir operation objectives are meeting municipal, environmental, and agricultural water demands. Results show the integrated approach, which relies on multi-objective optimization of municipal, environmental, and agricultural water supply, improves the municipal, environmental, and agricultural objectives by 70, 32, and 65% compared with the objectives' values achieved with the non-integrated approach, which implements a standard operating policy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-019-8039-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!