In this work, perovskite structure of BaTiO was coupled with FeO in different molar ratios achieving the best photocatalytic performance of CO reduction in the presence of CH as reducing agent; both of them are main greenhouse gases. The photocatalysts were synthesized by facile hydrothermal method. The samples were characterized by XRD, FTIR, FESEM, EDX, UV-Vis DRS, and photoluminescence (PL) analyses. The BaTiO synthesized in this research showed a weak PL signal which is due to the intrinsic ferroelectric property as has been observed in previous reports. Compared to the pure BaTiO and FeO, the heterojunctions exhibited enhanced photocatalytic activity. The maximum CO reduction under visible light irradiation was obtained to be 22% during 60 min process time. The enhanced photocatalytic activity could be attributed to the increased optical absorption, the good separation, and immigration of photogenerated charge carriers that decreased the recombination rate of charge carriers in the n-n heterojunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-07215-2 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom.
CaSiO[Formula: see text] perovskite (CaPv) is the last major mineral in the Earth's lower mantle whose elasticity remains largely unresolved. Here, we investigate the elasticity of CaPv using ab initio machine-learning force fields (MLFF). At room temperature, the elasticity of tetragonal CaPv determined by MLFF molecular dynamics (MD) agrees well with experimental measurements after considering temperature induced variations in the hydrostatic structure, proving the effectiveness of the method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics and Astronomy & Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States.
Wide band gap FACsPb(IBr) perovskite photovoltaic (PV) devices are measured by spectroscopic ellipsometry in the through-the-glass configuration and analyzed to determine the complex optical property spectra of the perovskite absorber as well as the structural properties of all constituent layers. This information is used to simulate external quantum efficiency (EQE) spectra, to calculate PV device performance parameters such as short circuit current density, open circuit voltage, fill factor, and power conversion efficiency, and to develop strategies for increasing the accuracy of predictions. Simulations and calculations tend to overestimate PV device performance parameters, undermining the accuracy and usefulness of those simulations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.
The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 63798, Singapore.
The corrugated <110> oriented layered metal halide perovskites (MHP) are gaining increased attention for a variety of properties including intrinsic white light emission. One prototypical candidate is 1-(3-aminopropyl)imidazole lead bromide, which was reported to crystallize as the <110> oriented perovskite (API)PbBr [API = 1-(3-aminopropyl)imidazole]. This work shows that under similar reaction conditions, the same components can instead form (API)PbBr, which has a "perovskitoid" structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!