Coronary artery disease (CAD) is still the preliminary cause of mortality and morbidity in the developed world. Identification of novel predictive and therapeutic biomarkers is crucial for accurate diagnosis, prognosis and treatment of the CAD. The aim of this study was to detect novel candidate miRNA biomarker that may be used in the management of CAD. We performed miRNA profiling in whole blood samples of angiographically confirmed Turkish men with CAD and non-CAD controls with insignificant coronary stenosis. Validation of microarray results was performed by qRT-PCR in a larger cohort of 62 samples. We subsequently assessed the diagnostic value of the miRNA and correlations of miRNA with clinical parameters. miRNA-target identification and network analyses were conducted by Ingenuity Pathway Analysis (IPA) software. Hsa-miR-584-5p was one of the top significantly dysregulated miRNA observed in miRNA microarray. Men-specific down-regulation (p = 0.040) of hsa-miR-584-5p was confirmed by qRT-PCR. ROC curve analysis highlighted the potential diagnostic value of hsa-miR-584-5p with a power area under the curve (AUC) of 0.714 and 0.643 in men and in total sample, respectively. The expression levels of hsa-miR-584-5p showed inverse correlation with stenosis and Gensini scores. IPA revealed CDH13 as the only CAD related predicted target for the miRNA with biological evidence of its involvement in CAD. This study suggests that hsa-miR-584-5p, known to be tumor suppressor miRNA, as a candidate biomarker for CAD and highlighted its putative role in the CAD pathogenesis. The validation of results in larger samples incorporating functional studies warrant further research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-019-05235-2DOI Listing

Publication Analysis

Top Keywords

novel candidate
8
candidate biomarker
8
turkish men
8
coronary artery
8
artery disease
8
cad
8
mirna
8
hsa-mir-584-5p
6
hsa-mir-584-5p novel
4
biomarker turkish
4

Similar Publications

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.

View Article and Find Full Text PDF

A cross-tissue transcriptome-wide association study identifies new susceptibility genes for insomnia.

J Neurophysiol

January 2025

Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Despite a significant genetic component to insomnia (heritability: 22-25%), the genetic loci that modulate insomnia risk remain limited. We employed the Unified Test for Molecular Markers (UTMOST) for transcriptome-wide association studies (TWAS) across various tissues, integrating summary statistics from a Genome-Wide Association Study (GWAS) of 462,341 European participants with gene expression data from the Genotype-Tissue Expression (GTEx) project. Three validation methods (FUSION, FOCUS, and MAGMA) were used to confirm important genes.

View Article and Find Full Text PDF

The death signaling complex comprising extrasynaptic NMDAR and TRPM4 plays a pivotal role in the pathogenesis of ischemic stroke. Targeting the protein-protein interactions between NMDAR and TRPM4 represents a promising therapeutic strategy for ischemic stroke. Herein, we describe the discovery of a novel series of NMDAR/TRPM4 interaction interface inhibitors aimed at enhancing neuroprotective efficacy and optimizing pharmacokinetic profiles.

View Article and Find Full Text PDF

Novel inhibition of sortase A by plantamajoside: implications for controlling multidrug-resistant infections.

Appl Environ Microbiol

December 2024

Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.

In confronting the significant challenge posed by multidrug-resistant (MDR) pathogens, particularly methicillin-resistant (MRSA), the development of innovative anti-infective strategies is essential. Our research focuses on sortase A (SrtA), a vital enzyme for anchoring surface proteins in . We discovered that plantamajoside (PMS), a phenylpropanoid glycoside extracted from .

View Article and Find Full Text PDF

Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!