Fibrillated Cellulose via High Pressure Homogenization: Analysis and Application for Orodispersible Films.

AAPS PharmSciTech

Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Dusseldorf, Germany.

Published: December 2019

Powdered cellulose (PC) and microcrystalline cellulose (MCC) are common excipients in pharmaceuticals. Recent investigations imply that particle size is the most critical parameter for the different performance in many processes. High-pressure homogenization (HPH) was used to reduce fiber size of both grades. The effect of the homogenization parameters on suspension viscosity, particle size, and mechanical properties of casted films was investigated. PC suspensions showed higher apparent viscosities and yield stresses under the same process conditions than MCC. SLS reduced shear viscosity and thixotropic behavior of both cellulose grades probably due to increased electrostatic repulsion. Homogenization reduced cellulose particle sizes, but re-agglomeration was too strong to analyze the particle size correctly. MCC films showed a tensile strength of up to 16.0 MPa and PC films up to 4.1 MPa. PC films disintegrated within 30 s whereas MCC films did not. Mixtures of MCC and PC led to more stable films than PC alone, but these films did not disintegrate anymore. Diclofenac sodium was incorporated in therapeutic dose with drug load of 47% into orodispersible PC films. The content uniformity of these films fulfilled requirements of Ph.Eur and the films disintegrated in 12 s. In summary, PC and MCC showed comparable results after HPH and most differences could be explained by the smaller particle size of MCC suspensions. These results confirm the hypothesis that mainly the fiber size during processing is responsible for the existing differences of MCC and PC in pharmaceutical process, e.g., wet-extrusion/spheronization.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-019-1593-7DOI Listing

Publication Analysis

Top Keywords

particle size
16
films
11
orodispersible films
8
mcc
8
fiber size
8
mcc films
8
films disintegrated
8
size
6
particle
5
fibrillated cellulose
4

Similar Publications

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Direct force measurements by atomic force microscopy (AFM) have become an indispensable analytical tool in the last decades. Force measurements have been widely used for adhesion measurements, often in combination with the colloidal probe technique. For the latter technique, a colloidal particle is attached to the end of an AFM cantilever, proving great flexibility in terms of colloid/surface interaction to be studied.

View Article and Find Full Text PDF

Soluble starch nanoparticles loaded with Gefitinib for treating lung cancer: Optimization and cytotoxicity assessment.

Int J Biol Macromol

January 2025

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia. Electronic address:

Lung cancer (LC) represents a catastrophically huge problem and it is a worldwide issue that has to be resolved. There is a declining confidence in classic cancer treatments as they lack selectivity, spur widespread harm, and exacerbate the suffering of LC patients. The poor solubility and extensive cell damage of Gefitinib limit its use in treating LC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!