High rates of acute and chronic pain are associated with traumatic brain injury (TBI), but mechanisms responsible for the association remain elusive. Recent data suggest dysregulated descending pain modulation circuitry could be involved. Based on these and other observations, we hypothesized that serotonin (5-HT)-dependent activation of spinal CXC Motif Chemokine Receptor 2 (CXCR2) may support TBI-related nociceptive sensitization in a mouse model of mild TBI (mTBI). We observed that systemic 5-HT depletion with p-chlorophenylalanine attenuated mechanical hypersensitivity seen after mTBI. Likewise, selective spinal 5-HT fiber depletion with 5,7-dihydroxytryptamine (5,7-DHT) reduced hypersensitivity after mTBI. Consistent with a role for spinal 5-HT serotonin receptors, intrathecal ondansetron administration after TBI dose-dependently attenuated nociceptive sensitization. Also, selective CXCR2 antagonist SCH527123 treatment attenuated mechanical hypersensitivity after mTBI. Furthermore, spinal CXCL1 and CXCL2 mRNA and protein levels were increased after mTBI as were GFAP and IBA-1 markers. Spinal 5,7-DHT application reduced both chemokine expression and glial activation. Our results suggest dual pathways for nociceptive sensitization after mTBI, direct 5-HT effect through 5-HT receptors and indirectly through upregulation of chemokine signaling. Designing novel clinical interventions against either the 5-HT mediated component or chemokine pathway may be beneficial in treating pain frequently seen in patients after mTBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925232 | PMC |
http://dx.doi.org/10.1038/s41598-019-55739-x | DOI Listing |
PeerJ
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, United States.
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department Neurology, Upper Silesian Medical Center named After Prof. Leszek Giec, ul. Ziołowa 45/47, 40-635 Katowice, Poland.
Lower back pain (LBP) is a common condition affecting primarily populations in developed countries, placing a significant burden on public health systems around the world. A high rate of pain recurrence increases the risk of developing a chronic syndrome and the occurrence of complex psychosocial and professional problems. Symptoms lasting longer than 12 weeks are associated with the risk of sleep problems, depression, and anxiety.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy.
Low back pain (LBP) is a leading cause of disability worldwide, often driven by distinct pain mechanisms: nociceptive, neuropathic, and central sensitization. Accurate classification of these mechanisms is critical for guiding effective, targeted treatments. A scoping review was conducted following the Joanna Briggs Institute methodology and reported according to PRISMA-ScR guidelines.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!