The repressive states of nuclear receptors (i.e., apo or bound to antagonists or inverse agonists) are poorly defined, despite the fact that nuclear receptors are a major drug target. Most ligand bound structures of nuclear receptors, including peroxisome proliferator-activated receptor Ī³ (PPARĪ³), are similar to the apo structure. Here we use NMR, accelerated molecular dynamics and hydrogen-deuterium exchange mass spectrometry to define the PPARĪ³ structural ensemble. We find that the helix 3 charge clamp positioning varies widely in apo and is stabilized by efficacious ligand binding. We also reveal a previously undescribed mechanism for inverse agonism involving an omega loop to helix switch which induces disruption of a tripartite salt-bridge network. We demonstrate that ligand binding can induce multiple structurally distinct repressive states. One state recruits peptides from two different corepressors, while another recruits just one, providing structural evidence of ligand bias in a nuclear receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925260 | PMC |
http://dx.doi.org/10.1038/s41467-019-13768-0 | DOI Listing |
Nat Commun
December 2024
Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).
View Article and Find Full Text PDFPlant Sci
December 2024
State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China. Electronic address:
WOX transcription factors (TFs) are plant specific transcription regulatory factors that have a momentous role in maintaining plant growth and development and responding to abiotic stress. In this study, a total of 13 PdbWOX genes were identified. qRT-PCR analyses showed that 13 PdbWOX genes were responsive to salt stress.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States.
RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4) in transgenic lines expressing various RIN4 variants.
View Article and Find Full Text PDFFood Chem Toxicol
December 2024
Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
Dichlorvos (DDVP) is an organophosphate insecticide that enhances food production and repels disease vectors. However, it provokes cytotoxicity. 2S-hesperidin (2S-HES) is a potent antioxidant, anti-inflammatory, and anti-lipidemic flavanone.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Ā Nanchang 330000,Ā China. Electronic address:
Nanoplastics (NPs) are an emerging class of pollutants. They can act as a"Trojan horse" to change the bioavailability and toxicity of heavy metals in the environment. However, research on the combined toxicity of heavy metals and NPs is scarce, especially during the critical developmental period of adolescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!