Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Statistical data-mining (DM) and machine learning (ML) are promising tools to assist in the analysis of complex dataset. In recent decades, in the precision of agricultural development, plant phenomics study is crucial for high-throughput phenotyping of local crop cultivars. Therefore, integrated or a new analytical approach is needed to deal with these phenomics data. We proposed a statistical framework for the analysis of phenomics data by integrating DM and ML methods. The most popular supervised ML methods; Linear Discriminant Analysis (LDA), Random Forest (RF), Support Vector Machine with linear (SVM-l) and radial basis (SVM-r) kernel are used for classification/prediction plant status (stress/non-stress) to validate our proposed approach. Several simulated and real plant phenotype datasets were analyzed. The results described the significant contribution of the features (selected by our proposed approach) throughout the analysis. In this study, we showed that the proposed approach removed phenotype data analysis complexity, reduced computational time of ML algorithms, and increased prediction accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925301 | PMC |
http://dx.doi.org/10.1038/s41598-019-55609-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!