Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pain and detection thresholds to short CO2 laser pulses were studied in healthy human subjects. Pain thresholds were significantly higher than detection thresholds in both hairy and glabrous skin; in the glabrous skin both thresholds were higher in the hairy skin. The range from detection threshold to pain threshold was larger in the glabrous skin. The minimal energy per surface area needed to produce any sensation (detection) or pain sensation decreased with increasing stimulus surface, and this spatial summation effect was to equal magnitude in the hairy and the glabrous skin. With decreasing stimulus pulse duration (from 45 to 15 msec) the detection and pain thresholds were elevated: this effect was stronger on pain thresholds. With increasing adapting skin temperature, less energy was needed to produce any sensation (detection) or pain sensation. The effect of adapting skin temperature was equal on pain and detection thresholds. The conduction velocity of fibers mediating laser evoked first sensations was in the thin fiber range (less than 10 msec), according to a reaction time study. The results suggest that short CO2 laser pulses produce both non-pain and pain sensations, but that both these sensations are based on the activation of the same primary afferent fiber population of slowly conducting nociceptive fibers. Central summation of primary afferent impulses is needed to elicit a liminal non-painful sensation, and an increased number of impulses in the same fibers produces pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0304-3959(88)90121-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!