Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to identify a membrane-bound complement inhibitor that could be overexpressed on retinal pigment epithelial cells (RPE) providing a potential therapy for age-related macular degeneration (AMD). This type of therapy may allow replacement of damaged RPE with cells that are able to limit complement activation in the retina. Complement Receptor 1 (CR1) is a membrane-bound complement inhibitor commonly found on erythrocytes and immune cells. In this study, QPCR and flow cytometry data demonstrated that CR1 is not well-expressed by RPE, indicating that its overexpression may provide extra protection from complement activation. To screen CR1 for this ability, a stable CR1-expressing ARPE19 line was created using a combination of antibiotic selection and FACS. Cell-based assays were used to demonstrate that addition of CR1 inhibited deposition of complement proteins C3b and C6 on the transfected line. In the end, this study identifies CR1 as a complement inhibitor that may be overexpressed on stem cell-derived RPE to create a potential "enhanced" cell therapy for AMD. A combination cell/complement therapy may create transplantable RPE better suited to avoid complement-mediated lysis and limit chronic inflammation in the retina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2019.11.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!