A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inertial sensor-based measures of gait symmetry and repeatability in people with unilateral lower limb amputation. | LitMetric

Inertial sensor-based measures of gait symmetry and repeatability in people with unilateral lower limb amputation.

Clin Biomech (Bristol)

University of Miami Miller School of Medicine, Department of Physical Therapy, Coral Gables, FL, USA; Neil Spielholz Functional Outcomes Research & Evaluation Center, University of Miami, Coral Gables, FL, USA; Miami Veterans Affairs Healthcare System, Miami, FL, USA.

Published: February 2020

Background: People with lower limb amputation often walk with asymmetrical gait patterns potentially leading to long-term health problems, ultimately affecting their quality of life. The ability to discreetly detect and quantify the movement of bilateral thighs and shanks using wearable sensor technology can provide additional insight into how a person walks with a lower limb prosthesis. This study investigated segmental symmetry and segmental repeatability of people with unilateral lower limb amputation, examining performance of the prosthetic and intact limbs.

Methods: Gyroscope signals were recorded from four inertial measurement units worn on bilateral lower limb segments of subjects with unilateral lower limb amputation during the 10-m walk test. Raw angular velocity signals were processed using dynamic time warping and application of algorithms resulting in symmetry measures comparing similarity of prosthetic to intact limb strides, and repeatability measures comparing movement of one limb to its consecutive strides.

Findings: Biomechanical differences in performance of the prosthetic and intact limb segments were detected with the segmental symmetry and segmental repeatability measures in 128 subjects. More asymmetries and less consistent movements of the lower limbs were exhibited by subjects with transfemoral amputation versus transtibial amputation (p < .004, Cohen's d = 0.65-1.1).

Interpretation: Sensor-based measures of segmental symmetry and segmental repeatability were found to be reliable in detecting discreet differences in movement of the prosthetic versus intact lower limbs in amputee subjects. These measures provide a convenient tool for enhanced prosthetic gait analysis with the potential to focus rehabilitative and prosthetic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2019.12.007DOI Listing

Publication Analysis

Top Keywords

lower limb
24
limb amputation
16
unilateral lower
12
prosthetic intact
12
limb
9
repeatability people
8
people unilateral
8
segmental symmetry
8
symmetry segmental
8
segmental repeatability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!