A novel liposomal nanocomposite, Au@PIL-cerasome, with biocompatibility and conductivity was fabricated via the self-assembly of cerasomes and gold nanoparticles (AuNPs) stabilized by poly(ionic liquid)s (PILs). The surface charge, morphology and chemical composition of the nanocomposites were characterized by the zeta potential, UV-vis, TEM, SEM and EDS. The nanocomposites exhibited structural stability directly on the surface of solid electrodes, without fusion. Electrochemical impedance experiments demonstrated that the nanocomposites had an enhanced conductivity compared with unmodified cerasomes. Horseradish peroxidase (HRP), as a reporter, was immobilized on the nanocomposites without denaturation or inactivation. The direct electron transfer of HRP was achieved, and the HRP/Au@PIL-cerasome/GCE exhibited an amplified current and improved electrocatalytic activity. Activity towards HO displayed a linear range over 10-70 μM and a detection limit of 3.3 μM. Activity towards NO displayed linear ranges over 1-5 mM and 5-1280 mM, and the limit of detection was 0.11 mM. In addition, the electrode was stable and reproducible, with 6% RSD. Such multi-component liposomal nanocomposites with an enhanced electrical performance pave a better way for building novel and straightforward 3D stereo biomimetic electrochemical platforms and even molecular communication systems to investigate information transduction between cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2019.107411 | DOI Listing |
Biomimetics (Basel)
December 2024
School of Artificial Intelligence, Tongmyong University, Busan 48520, Republic of Korea.
Depth estimation plays a pivotal role in advancing human-robot interactions, especially in indoor environments where accurate 3D scene reconstruction is essential for tasks like navigation and object handling. Monocular depth estimation, which relies on a single RGB camera, offers a more affordable solution compared to traditional methods that use stereo cameras or LiDAR. However, despite recent progress, many monocular approaches struggle with accurately defining depth boundaries, leading to less precise reconstructions.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
Inspired by the biological eye movements of fish such as pipefish and sandlances, this paper presents a novel dynamic calibration method specifically for active stereo vision systems to address the challenges of active cameras with varying fields of view (FOVs). By integrating static calibration based on camera rotation angles with dynamic updates of extrinsic parameters, the method leverages relative pose adjustments between the rotation axis and cameras to update extrinsic parameters continuously in real-time. It facilitates epipolar rectification as the FOV changes, and enables precise disparity computation and accurate depth information acquisition.
View Article and Find Full Text PDFBiomimetics (Basel)
October 2024
Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Las Campanas, Queretaro 76010, Mexico.
The precision of robotic manipulators in the industrial or medical field is very important, especially when it comes to repetitive or exhaustive tasks. Geometric deformations are the most common in this field. For this reason, new robotic vision techniques have been proposed, including 3D methods that made it possible to determine the geometric distances between the parts of a robotic manipulator.
View Article and Find Full Text PDFStereo imaging has been a focal point in fields such as robotics and autonomous driving. This Letter discusses the imaging mechanisms of jumping spiders and human eyes from a biomimetic perspective and proposes a monocular stereo imaging solution with low computational cost and high stability. The stereo imaging mechanism of jumping spiders enables monocular imaging without relying on multiple viewpoints, thus avoiding complex large-scale feature point matching and significantly conserving computational resources.
View Article and Find Full Text PDFChemphyschem
September 2024
Łukasiewicz Research Network -, PORT Polish Centre for Technology Development, ul. Stabłowicka 147, 54-066, Wrocław, Poland.
Polyurethanes are commodity materials used for multiple applications. In recent years, a new category of polyurethane material has emerged, characterized by the lack of polymer molar mass dispersity, control of the monomer arrangement in the chain, and even full stereocontrol. Various multistep synthesis strategies have been developed to fabricate sequence-defined polyurethanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!