The human brain coordinates a wide variety of motor activities. On a large scale, the cortical motor system is topographically organized such that neighboring body parts are represented by neighboring brain areas. This homunculus-like somatotopic organization along the central sulcus has been observed using neuroimaging for large body parts such as the face, hands and feet. However, on a finer scale, invasive electrical stimulation studies show deviations from this somatotopic organization that suggest an organizing principle based on motor actions rather than body part moved. It has not been clear how the action-map organization principle of the motor cortex in the mesoscopic (sub-millimeter) regime integrates into a body map organization principle on a macroscopic scale (cm). Here we developed and applied advanced mesoscopic (sub-millimeter) fMRI and analysis methodology to non-invasively investigate the functional organization topography across columnar and laminar structures in humans. Compared to previous methods, in this study, we could capture locally specific blood volume changes across entire brain regions along the cortical curvature. We find that individual fingers have multiple mirrored representations in the primary motor cortex depending on the movements they are involved in. We find that individual digits have cortical representations up to 3 ​mm apart from each other arranged in a column-like fashion. These representations are differentially engaged depending on whether the digits' muscles are used for different motor actions such as flexion movements, like grasping a ball or retraction movements like releasing a ball. This research provides a starting point for non-invasive investigation of mesoscale topography across layers and columns of the human cortex and bridges the gap between invasive electrophysiological investigations and large coverage non-invasive neuroimaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2019.116463DOI Listing

Publication Analysis

Top Keywords

motor cortex
12
sub-millimeter fmri
8
body parts
8
somatotopic organization
8
motor actions
8
organization principle
8
mesoscopic sub-millimeter
8
find individual
8
motor
7
organization
5

Similar Publications

Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.

View Article and Find Full Text PDF

Predicting upper limb motor recovery in subacute stroke patients via fNIRS-measured cerebral functional responses induced by robotic training.

J Neuroeng Rehabil

December 2024

Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, P.R. China.

Background: Neural activation induced by upper extremity robot-assisted training (UE-RAT) helps characterize adaptive changes in the brains of poststroke patients, revealing differences in recovery potential among patients. However, it remains unclear whether these task-related neural activities can effectively predict rehabilitation outcomes. In this study, we utilized functional near-infrared spectroscopy (fNIRS) to measure participants' neural activity profiles during resting and UE-RAT tasks and developed models via machine learning to verify whether task-related functional brain responses can predict the recovery of upper limb motor function.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) is applied both in research settings and clinically, notably in treating depression through the dorsolateral prefrontal cortex (dlPFC). We have recently shown that transcranial alternating current stimulation of the dlPFC partially entrains muscle sympathetic nerve activity (MSNA) to the stimulus. We, therefore, aimed to further explore the sympathetic properties of the dlPFC, hypothesizing that single-pulse TMS could generate de novo MSNA bursts.

View Article and Find Full Text PDF

[How to use clinical neurophysiology in functional neurological disorders (FND)?].

Rinsho Shinkeigaku

December 2024

Section of Human Neurophysiology, Institute of Biomedical Sciences, Fukushima Medical University.

I have reviewed the utility of clinical neurophysiological examinations in recently highlighted functional neurological disorders (FND) focusing mainly on functional movement disorders (FMD). There are many neurophysiological methods useful for diagnosis of FMD. I will hereafter summarize a few of them in the following part.

View Article and Find Full Text PDF

Alterations in functional connectivity of interoceptive and Cortico-Subcortical areas in Multiple Sclerosis-Related fatigue.

Neuroscience

December 2024

Department of Neurology, Oregon Health & Science University, Portland, OR, United States; APDM Precision Motion, Clario, Portland, Oregon, United States. Electronic address:

Fatigue in people with Multiple Sclerosis (PwMS) is a poorly understood, complex, and disabling symptom. We hypothesized that the perception of fatigue in PwMS results from increased information processing in cortical areas responsible for the perception of bodily states and decreased information processing in the cortico-basal ganglia network involved in the perception of motor performance. We investigated whether PwMS who perceive excessive fatigue would have increased resting-state functional connectivity (rsFC) between interoceptive brain areas (amygdala, anterior cingulate cortex [ACC], and insula) and decreased rsFC between cortico-basal ganglia premotor network compared to PwMS not reporting fatigue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!