The voltage-dependent anion channel (VDAC) forms the primary diffusion pore of the outer mitochondrial membrane. In its apo form, VDAC adopts an open conformation with high conductance. States of lower conductance can be induced by ligand binding or the application of voltage. Here, we clarify at the atomic level how β-NADH binding leads to a low-conductance state and characterize the role of the VDAC N-terminal helix in voltage gating. A high-resolution NMR structure of human VDAC-1 with bound NADH, combined with molecular dynamics simulation show that β-NADH binding reduces the pore conductance sterically without triggering a structural change. Electrophysiology recordings of crosslinked protein variants and NMR relaxation experiments probing different time scales show that increased helix dynamics is present in the open state and that motions of the N-terminal helices are involved in the VDAC voltage gating mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353649PMC
http://dx.doi.org/10.1016/j.str.2019.11.015DOI Listing

Publication Analysis

Top Keywords

β-nadh binding
12
voltage gating
12
vdac
5
structural basis
4
basis low
4
conductance
4
low conductance
4
conductance membrane
4
membrane protein
4
protein vdac
4

Similar Publications

Objective And Significance: Transforming growth factor-beta (TGF-β) plays a pivotal role in breast development by modulating tissue composition during the developmental phase. The TGFβ type II receptor (TGFβ RII) is implicated in breast cancer and represents a valuable therapeutic target. Due to the off-target side effects of many existing TGFβI/TGFβ RII inhibitors, a more targeted approach to drug discovery is necessary.

View Article and Find Full Text PDF

EGFR inhibitors are a class of targeted therapies utilized in the management of certain tumor kinds such as NSCLC and breast cancer. Series of 1,2,3-triazole-Schiff's base hybrids were designed, synthesized, and estimated for their antitumor effect toward breast cancer cells, MCF-7 and MDA-MB-231. The safety and selectivity of the new compounds were tested using normal cell (WI-38).

View Article and Find Full Text PDF

Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.

View Article and Find Full Text PDF

Objective: Fixed dose combination (FDC) dolutegravir (DTG) plus rilpivirine (RPV) is an approved antiretroviral treatment regimen for people with HIV. The steady-state pharmacokinetics (PK) of FDC DTG+RPV in hemodialysis (HD) has not been previously studied.

Design: We performed a single-center, prospective evaluation of the steady-state PK of FDC DTG +RPV in 4 adults without HIV either requiring HD and in 4 matched participants with normal renal function.

View Article and Find Full Text PDF

Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function MECP2 mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!