Influence of the structure and composition of Fe-Mn binary oxides on rGO on As(III) removal from aquifers.

J Environ Sci (China)

Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China.

Published: February 2020

Fe-Mn binary oxide (FMBO) possesses high efficiency for As(III) abatement based on the good adsorption affinity of iron oxide and the oxidizing capacity of Mn(IV), and the composition and structure of FMBO play important roles in this process. To compare the removal performance and determine the optimum formula for FMBO, magnetic graphene oxide (MRGO)-FMBO and MRGO-MnO were synthesized with MRGO as a carrier to improve the dispersity of the adsorbents in aquifers and achieve magnetic recycling. Results indicated that MRGO-FMBO had higher As(III) removal than that of MRGO-MnO, although the ratios of Fe and Mn were similar, because the binary oxide of Fe and Mn facilitated electron transfer from Mn(IV) to As(III), while the separation of Mn and Fe on MRGO-MnO restricted the process. The optimal stoichiometry x for MRGO-FMBO (MnFeO) was 0.46, and an extraordinary adsorption capacity of 24.38 mg/g for As(III) was achieved. MRGO-FMBO showed stable dispersive properties in aquifers, and exhibited excellent practicability and reusability, with a saturation magnetization of 7.6 emu/g and high conservation of magnetic properties after 5 cycles of regeneration and reuse. In addition, the presence of coexisting ions would not restrict the practical application of MRGO-FMBO in groundwater remediation. The redox reactions of As(III) and Mn(IV) on MRGO-FMBO were also described. The deprotonated aqueous As(III) on the surface of MRGO-FMBO transferred electrons to Mn(IV), and the formed As(V) oxyanions were bound to ferric oxide as inner-sphere complexes by coordinating their "-OH" groups with Mn(IV) oxides at the surface of MRGO-FMBO. This work could provide new insights into high-performance removal of As(III) in aquifers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2019.08.008DOI Listing

Publication Analysis

Top Keywords

fe-mn binary
8
asiii
8
asiii removal
8
binary oxide
8
mrgo-fmbo
8
surface mrgo-fmbo
8
oxide
5
mniv
5
influence structure
4
structure composition
4

Similar Publications

Researchers have significantly focused on eco-friendly methods for nanomaterial synthesis to reduce the reliance on hazardous chemicals. In light of this, this study presents an eco-friendly, straightforward, alkali-free method for synthesizing iron-manganese (Fe-Mn) binary oxide (FMBO) and their single oxides by adopting a direct gel formation approach using starch. The synthesized materials were characterized through FTIR, FESEM, EDX, and XRD.

View Article and Find Full Text PDF

Polarized Bimetallic Site Synergy in Ionic Structures of Cu(II), Fe(III), and Mn(III) Porphyrins: Electrochemistry and Catalytic Hydrogenation of Nitroaromatics.

Inorg Chem

December 2024

LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.

Binuclear catalytic sites attained in a controlled way with complementary and cooperative metal ion centers are highly relevant in the development of new or enhanced catalytic processes. Herein, binuclear sites carrying Fe(III), Cu(II), or Mn(III) metal ions with a polarized structure have been prepared using the ionic self-assembly of oppositely charged metalloporphyrins. Binary porphyrin structures (BIPOS) have been prepared based on metalloporphyrin cations carrying pyridinium or methylpyridinium groups in conjugation with metalloporphyrin anions carrying sulfonatophenyl groups.

View Article and Find Full Text PDF

Binary Iron-Manganese Cocatalyst for Simultaneous Activation of C-C and C-O Bonds to Maximally Utilize Lignin for Syngas Generation over InGaN.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Solar-powered lignin reforming offers a carbon-neutral route for syngas production. This study explores a dual non-precious iron-manganese cocatalyst to simultaneously activate both C-C and C-O bonds for maximizing the utilization of various substituents of native lignin to yield syngas. The cocatalyst, integrated with InGaN nanowires on a Si wafer, affords a measurable syngas evolution rate of 42.

View Article and Find Full Text PDF

Adsorption Performance of Fe-Mn Polymer Nanocomposites for Arsenic Removal: Insights from Kinetic and Isotherm Models.

Materials (Basel)

October 2024

Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.

Article Synopsis
  • This study investigates the use of Fe-Mn binary oxide (FMBO) nanocomposites, coated on polyethylene (PE) and polyethylene terephthalate (PET), for removing arsenic from contaminated drinking water.
  • The results show that PET-FMBO and FMBO are more effective, achieving up to 96% arsenic removal, with maximum adsorption capacities significantly higher than PE-FMBO.
  • The mechanism of arsenic removal involves chemisorption through ligand exchange, emphasizing the potential of these nanocomposites for practical water treatment solutions.
View Article and Find Full Text PDF

The self-cementation characteristics of arsenic (As)-contaminated soil were comprehensively investigated in this study. Different non-thermal plasma-irradiated binary (hydro)oxides of polyvalent ferromanganese (poly-Fe-Mn) were synthesized and exploratorily dispersed to soil samples to activate solidification and stabilization during the self-cemented process. The maximum compressive strength of 56.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!