Tellurium-Doped, Mesoporous Carbon Nanomaterials as Transparent Metal-Free Counter Electrodes for High-Performance Bifacial Dye-Sensitized Solar Cells.

Nanomaterials (Basel)

Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea.

Published: December 2019

Tellurium-doped, mesoporous carbon nanomaterials with a relatively high doping level were prepared by a simple stabilization and carbonization method in the presence of a tellurium metalloid. A transparent counter electrode (CE) was prepared using tellurium-doped, mesoporous carbon (TeMC) materials, and was directly applied to bifacial, dye-sensitized solar cells (DSSCs). To improve the performance of the bifacial DSSC device, CEs should have outstanding electrocatalytic activity, electrical conductivity, and electrochemical stability, as well as high transparency. In this study, to make transparent electrodes with outstanding electrocatalytic activity and electrical conductivity, various TeMC materials with different carbonization temperatures were prepared by simple pyrolysis of the polyacrylonitrile-block-poly (n-butyl acrylate) (PAN-b-PBA) block copolymer in the presence of the tellurium metalloid. The electrocatalytic activity of the prepared TeMC materials were evaluated through a dummy cell test, and the material with the best catalytic ability was selected and optimized for application in bifacial DSSC devices by controlling the film thickness of the CE. As a result, the bifacial DSSC devices with the TeMC CE exhibited high power conversion efficiencies (PCE), i.e., 9.43% and 8.06% under front and rear side irradiation, respectively, which are the highest values reported for bifacial DSSCs to date. Based on these results, newly-developed transparent, carbon-based electrodes may lead to more stable and effective bifacial DSSC development without sacrificing the photovoltaic performance of the DSSC device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022714PMC
http://dx.doi.org/10.3390/nano10010029DOI Listing

Publication Analysis

Top Keywords

bifacial dssc
16
tellurium-doped mesoporous
12
mesoporous carbon
12
temc materials
12
electrocatalytic activity
12
carbon nanomaterials
8
bifacial dye-sensitized
8
dye-sensitized solar
8
solar cells
8
prepared simple
8

Similar Publications

Dye-sensitized solar cells (DSSCs) are solar energy conversion devices with high efficiency and simple fabrication procedures. Developing transparent counter electrode (CE) materials for bifacial DSSCs can address the needs of window-type building-integrated photovoltaics (BIPVs). Herein, transparent organic-inorganic hybrid composite films of molybdenum disulfide and poly(3,4-ethylenedioxythiophene) (MoS/PEDOT) are prepared to take full advantage of the conductivity and electrocatalytic ability of the two components.

View Article and Find Full Text PDF

The development of a highly active, long-lasting, and cost-effective electrocatalyst as an alternative to platinum (Pt) is a vital issue for the commercialization of dye-sensitized solar cells. In this study, Ru-N-doped template-free mesoporous carbon (Ru-N-TMC) was prepared by the direct stabilization and carbonization of the poly(butyl acrylate)-b-polyacrylonitrile (PBA-b-PAN) block copolymer and ruthenium(iii) acetylacetonate [Ru(acac)3]. During the stabilization process, microphase separation occurred in the PBA-b-PAN block copolymer due to the incompatibility between the two blocks, and the PAN block transformed to N-doped semi-graphitic carbon.

View Article and Find Full Text PDF

Tellurium-Doped, Mesoporous Carbon Nanomaterials as Transparent Metal-Free Counter Electrodes for High-Performance Bifacial Dye-Sensitized Solar Cells.

Nanomaterials (Basel)

December 2019

Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea.

Tellurium-doped, mesoporous carbon nanomaterials with a relatively high doping level were prepared by a simple stabilization and carbonization method in the presence of a tellurium metalloid. A transparent counter electrode (CE) was prepared using tellurium-doped, mesoporous carbon (TeMC) materials, and was directly applied to bifacial, dye-sensitized solar cells (DSSCs). To improve the performance of the bifacial DSSC device, CEs should have outstanding electrocatalytic activity, electrical conductivity, and electrochemical stability, as well as high transparency.

View Article and Find Full Text PDF

Bifacial dye-sensitized solar cells (DSSCs) are regarded as promising solar energy conversion devices with high efficiency and less resource consumption. In this work, a highly transparent and efficient counter electrode (CE) is fabricated by introducing highly dispersed single Pt atoms doped into the van der Waals layer-by-layer epitaxially grown Zn-TCPP thin film (Zn-TCPP-Pt). The resulting Zn-TCPP-Pt CE has similar catalytic activity to commercial Pt CE but shows a better light transmission capacity in the range of visible light.

View Article and Find Full Text PDF

High-efficiency, stable bifacial dye-sensitized solar cells (DSSCs) are prepared for application under indoor light conditions. A 3-methoxypropionitrile solvent and cobalt redox couples are utilized to prepare the electrolytes. To obtain the best cell performance, the components of the DSSCs, including electrolytes, photoanodes, and counter electrodes (CEs), are regulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!