Nano-Scaled Creep Response of TiAlV Low Density Medium Entropy Alloy at Elevated Temperatures.

Materials (Basel)

Department of Mechanical Engineering, Institute of Materials Science and Engineering, National Central University, Chung-Li 32001, Taiwan.

Published: December 2019

A low density, medium entropy alloy (LD-MEA) TiAlV (4.44 g/cm) was successfully developed. The microstructure was found to be composed of a disordered body-centered-cubic (BCC) matrix and minor ordered B2 precipitates based on transmission electron microscopy characterization. Equilibrium and non-equilibrium modeling, simulated using the Calphad approach, were applied to predict the phase constituent. Creep behavior of {110} grains at elevated temperatures was investigated by nanoindentation and the results were compared with Cantor alloy and Ti-6Al-4V alloy. Dislocation creep was found to be the dominant mechanism. The decreasing trend of hardness in {110} grains of BCC TiAlV is different from that in {111} grains of face-centered-cubic (FCC) Cantor alloy due to the different temperature-dependence of Peierls stress in these two lattice structures. The activation energy value of {110} grains was lower than that of {111} grains in FCC Cantor alloy because of the denser atomic stacking in FCC alloys. Compared with conventional Ti-6Al-4V alloy, TiAlV possesses considerably higher hardness and specific strength (63% higher), 83% lower creep displacement at room temperature, and 50% lower creep strain rate over the temperature range from 500 to 600 °C under the similar 1150 MPa stress, indicating a promising substitution for Ti-6Al-4V alloy as structural materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982153PMC
http://dx.doi.org/10.3390/ma13010036DOI Listing

Publication Analysis

Top Keywords

{110} grains
12
cantor alloy
12
ti-6al-4v alloy
12
low density
8
density medium
8
medium entropy
8
alloy
8
entropy alloy
8
elevated temperatures
8
{111} grains
8

Similar Publications

The mechanical properties of music wire are contingent upon its microstructure, which in turn influences its applications in music. Chinese stringed instruments necessitate exacting standards for comprehensive performance indexes, particularly with regard to the strength, resilience, and rigidity of the musical steel wires, which differ from the Western approach to musical wire. In this study, SWP-B music wire was selected for investigation through metal heat treatment, which was employed to regulate its microstructure characteristics.

View Article and Find Full Text PDF

In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance of strength and plasticity of the bimodal microstructure is better. However, the fatigue performance of the bimodal microstructure is unstable due to the bilinear phenomenon of the S-N curve.

View Article and Find Full Text PDF

Recycling of Agricultural Film Wastes for Use as a Binder in Building Composites.

Materials (Basel)

January 2025

Research Team of Quantitative Methods and Spatial Management, Institute of Agriculture and Horticulture, Faculty of Agricultural Sciences, University of Siedlce, B. Prusa 14, 08-110 Siedlce, Poland.

Plastic film, also known as low-density polyethylene (LDPE), poses serious environmental challenges due to mass production, short life cycle, and poor waste management. The main aim of this paper was to examine the suitability of using agricultural waste film as a binder in construction composites instead of the traditional cement slurry. Molten at temperatures of around 120-150 °C wastes was mixed with fine sand and gravel aggregate as filler.

View Article and Find Full Text PDF

Goldfish (), subjected to millennia of artificial selection and breeding, have diversified into numerous ornamental varieties, such as the celestial-eye (CE) goldfish, noted for its unique dorsal eye rotation. Previous studies have primarily focused on anatomical modifications in CE goldfish eyes, yet the molecular underpinnings of their distinctive eye orientation remain poorly understood. This study employed high-throughput transcriptome and proteome sequencing on 110-day-old full-sibling CE goldfish, which displayed either anterior or upward eye rotations.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is a global health crisis linked to increased cardiovascular risk. Research indicates that better dietary quality-higher intake of fruits, vegetables, and whole grains, and lower intake of processed foods-reduces T2DM risk. This study examines the relationship between T2DM and dietary quality indices (DQI-I and DQI-R) to determine if adherence can lower diabetes risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!