Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper details study of the anti-symmetric response to the symmetrical electrostatic excitation of a Micro-electro-mechanical-systems (MEMS) resonant mass sensor. Under higher order mode excitation, two nonlinear coupled flexural modes to describe MEMS mass sensors are obtained by using Hamilton's principle and Galerkin method. Static analysis is introduced to investigate the effect of added mass on the natural frequency of the resonant sensor. Then, the perturbation method is applied to determine the response and stability of the system for small amplitude vibration. Through bifurcation analysis, the physical conditions of the anti-symmetric mode vibration are obtained. The corresponding stability analysis is carried out. Results show that the added mass can change the bifurcation behaviors of the anti-symmetric mode and affect the voltage and frequency of the bifurcation jump point. Typically, we propose a mass parameter identification method based on the dynamic jump motion of the anti-symmetric mode. Numerical studies are introduced to verify the validity of mass detection method. Finally, the influence of physical parameters on the sensitivity of mass sensor is analyzed. It is found that the DC voltage and mass adsorption position are critical to the sensitivity of the sensor. The results of this paper can be potentially useful in nonlinear mass sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020076 | PMC |
http://dx.doi.org/10.3390/mi11010012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!