Cell-penetrating peptides are used extensively to deliver molecules into cells due to their unique characteristics such as rapid internalization, charge, and non-cytotoxicity. Amyloid fibril biomaterials were reported as gene transfer or retroviral infection enhancers; no cell internalization of the peptides themselves is reported so far. In this study, we focus on two rationally and computationally designed peptides comprised of β-sheet cores derived from naturally occurring protein sequences and designed positively charged and aromatic residues exposed at key residue positions. The β-sheet cores bestow the designed peptides with the ability to self-assemble into amyloid fibrils. The introduction of positively charged and aromatic residues additionally promotes DNA condensation and cell internalization by the self-assembled material formed by the designed peptides. Our results demonstrate that these designer peptide fibrils can efficiently enter mammalian cells while carrying packaged luciferase-encoding plasmid DNA, and they can act as a protein expression enhancer. Interestingly, the peptides additionally exhibited strong antimicrobial activity against the enterobacterium

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023140PMC
http://dx.doi.org/10.3390/biom10010007DOI Listing

Publication Analysis

Top Keywords

designed peptides
12
cell-penetrating peptides
8
gene transfer
8
cell internalization
8
β-sheet cores
8
positively charged
8
charged aromatic
8
aromatic residues
8
peptides
7
designer amyloid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!