Catechins, phytochemicals contained mainly in green tea, exhibit antiviral activity against various acute infectious diseases experimentally. Clinical evidence supporting these effects, however, is not conclusive. We performed a placebo-controlled, single-blind, randomized control trial to evaluate the clinical effectiveness of consumption of catechins-containing beverage for preventing acute upper respiratory tract infections (URTIs). Two hundred and seventy healthcare workers were randomly allocated to high-catechin (three daily doses of 57 mg catechins and 100 mg xanthan gum), low-catechin (one daily dose of 57 mg catechins and 100 mg xanthan gum), or placebo (0 mg catechins and 100 mg xanthan gum) group. Subjects consumed a beverage with or without catechins for 12 weeks from December 2017 through February 2018. The primary endpoint was incidence of URTIs compared among groups using a time-to-event analysis. A total of 255 subjects were analyzed (placebo group n = 86, low-catechin group n = 85, high catechin group n = 84). The URTI incidence rate was 26.7% in the placebo group, 28.2% in the low-catechin group, and 13.1% in the high-catechin group (log rank test, 0.042). The hazard ratio (95% confidence interval (CI)) with reference to the placebo group was 1.09 (0.61-1.92) in the low-catechin group and 0.46 (0.23-0.95) in the high-catechin group. These findings suggest that catechins combined with xanthan gum protect against URTIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019590PMC
http://dx.doi.org/10.3390/nu12010004DOI Listing

Publication Analysis

Top Keywords

xanthan gum
16
catechins 100
12
100 xanthan
12
placebo group
12
low-catechin group
12
group
10
acute upper
8
upper respiratory
8
healthcare workers
8
high-catechin group
8

Similar Publications

The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.

View Article and Find Full Text PDF

Combining antibacterial and wound healing features: Xanthan gum/guar gum 3D-printed scaffold tuned with hydroxypropyl-β-cyclodextrin/thymol and Zn.

Carbohydr Polym

March 2025

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:

Biofilm formation on biological and material surfaces represents a heavy health and economic burden for both patient and society. To contrast this phenomenon, medical devices combining antibacterial and pro-wound healing abilities are a promising strategy. In the present work, Xanthan gum/Guar gum (XG/GG)-based scaffolds were tuned with thymol and Zn to obtain wound dressings that combine antibacterial and antibiofilm properties and favour the healing process.

View Article and Find Full Text PDF

Xanthan gum (XG), recognized for its environmentally friendly properties and versatile capabilities, has been studied for drilling fluid applications. However, its limited solubility and thermal stability restricts its broader use. In this study, a modified XG derivative, XG-g-KH570 modified SiO, was synthesized by grafting XG with KH570-modified nano-SiO.

View Article and Find Full Text PDF

Instabilities in the form of periodic or irregular waves at the fluid interface have been demonstrated in microchannel electrokinetic flows with conductivity gradients when the applied electric field is above a threshold value. Most prior studies on electrokinetic instabilities (EKI) are restricted to Newtonian fluids though many of the chemical and biological samples in microfluidic applications exhibit non-Newtonian characteristics. We present in this work an experimental study of the effects of fluid shear thinning on the development of EKI waves through the addition of a small amount of xanthan gum (XG) polymer to both the high- and low-concentration Newtonian buffer solutions.

View Article and Find Full Text PDF

As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!