Electrospinning is a popular method for creating random, non-woven fibrous templates for biomedical applications, and a subtype technique termed near-field electrospinning (NFES) was devised by reducing the air gap distance to millimeters. This decreased working distance paired with precise translational motion between the fiber source and collector allows for the direct writing of fibers. We demonstrate a near-field electrospinning device designed from a MakerFarm Prusa i3v three-dimensional (3D) printer to write polydioxanone (PDO) microfibers. PDO fiber diameters were characterized over the processing parameters: Air gap, polymer concentration, translational velocity, needle gauge, and applied voltage. Fiber crystallinity and individual fiber uniformity were evaluated for the polymer concentration and translational fiber deposition velocity. Fiber stacking was evaluated for the creation of 3D templates to guide the alignment of human gingival fibroblasts. The fiber diameters correlated positively with polymer concentration, applied voltage, and needle gauge; and inversely correlated with translational velocity and air gap distance. Individual fiber diameter variability decreases, and crystallinity increases with increasing translational fiber deposition velocity. These data resulted in the creation of tailored PDO 3D templates, which guided the alignment of primary human fibroblast cells. Together, these results suggest that NFES of PDO can be scaled to create precise geometries with tailored fiber diameters for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023022 | PMC |
http://dx.doi.org/10.3390/polym12010001 | DOI Listing |
Biomed Mater
December 2024
AGH University of Krakow, al. A. Mickiewicza 30, Kraków, Krakow, Małopolskie, 30-059, POLAND.
Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide a support for a new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for its use in specific biological tissues.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Electronic address:
A near-field electrospinnable and three-dimensional (3D) bioprintable gelatin-alginate hydrogel was synthesized by controlling a moderate amount of alginate and a limited amount of crosslinker, tannic acid. This cytocompatible gelatin-alginate tough hydrogel exhibited excellent shape fidelity, a self-standing height exceeding 20 mm, and the capability for multilayer and four-axis 3D printing of complex scaffold shapes. The control of gel strength and rheology enables this hydrogel for successful stretching extrusion under an electric field in near-field electrospinning-induced 3D printing and four-axis printing.
View Article and Find Full Text PDFMicromachines (Basel)
September 2024
Division of Pulmonary Medicine, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan.
This study fabricated piezoelectric fibers of polyvinylidene fluoride (PVDF) with graphene using near-field electrospinning (NFES) technology. A uniform experimental design table U*774 was applied, considering weight percentage (1-13 wt%), the distance between needle and disk collector (2.1-3.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, 14115-336 Tehran, Iran; Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-143 Tehran, Iran. Electronic address:
Near-field electrospinning (NFES) has recently gained considerable interest in fabricating tissue engineering scaffolds. This technique combines the advantages of both 3D printing and electrospinning. It allows for the production of fibers with smaller resolution and the ability to make regular structures with suitable pores.
View Article and Find Full Text PDFPolymers (Basel)
June 2024
Biomass 3D Printing Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Near-field direct-writing electrospinning technology can be used to produce ordered micro/nanofiber membrane dressings. The application of this technology can simply realize the control of dressing porosity, compound different functional substances, and adjust their distribution, thus improving the defects of common dressings such as insufficient breathability, poor moisture retention performance, and single function. Herein, a novel multifunctional wound dressing was prepared to utilize near-field direct-writing electrospinning technology, in which calf skin collagen type I (CSC-I) and polycaprolactone (PCL) were used as the composite matrix, Hexafluoroisopropanol (HFIP) as the solvent, and erythromycin (ERY) as an anti-infective drug component.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!