The purpose of this study was to develop a resveratrol nanosuspension with enhanced oral bioavailability, based on an understanding of the formulation and process parameters of nanosuspensions and using a quality by design (QbD) approach. Particularly, the antisolvent method, which requires no solvent removal and no heating, is newly applied to prepare resveratrol nanosuspension. To ensure the quality of the resveratrol nanosuspensions, a quality target product profile (QTPP) was defined. The particle size (z-average, d90), zeta potential, and drug content parameters affecting the QTPP were selected as critical quality attributes (CQAs). The optimum composition obtained using a 3-factor, 3-level Box-Behnken design was as follows: polyvinylpyrrolidone vinyl acetate (10 mg/mL), polyvinylpyrrolidone K12 (5 mg/mL), sodium lauryl sulfate (1 mg/mL), and diethylene glycol monoethyl ether (DEGEE, 5% /) at a resveratrol concentration of 5 mg/mL. The initial particle size (z-average) was 46.3 nm and the zeta potential was -38.02 mV. The robustness of the antisolvent process using the optimized composition conditions was ensured by a full factorial design. The dissolution rate of the optimized resveratrol nanosuspension was significantly greater than that of the resveratrol raw material. An in vivo pharmacokinetic study in rats showed that the area under the plasma concentration versus time curve () and the maximum plasma concentration () respectively, than those of the resveratrol raw material. Therefore, the prepara values of the resveratrol nanosuspension were approximately 1.6- and 5.7-fold higher,tion of a resveratrol nanosuspension using the QbD approach may be an effective strategy for the development of a new dosage form of resveratrol, with enhanced oral bioavailability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955680 | PMC |
http://dx.doi.org/10.3390/pharmaceutics11120688 | DOI Listing |
Int J Pharm
August 2024
Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, 57126 Indonesia. Electronic address:
Resveratrol (RSV) has powerful antioxidant activities. However, the bioavailability is still limited due to low solubility and transport issues. Nanocrystal technology has been introduced to address these issues; however, the bulky formulation of the nanocrystal process through nanosuspension faces a big challenge in terms of stability and scale-up ability.
View Article and Find Full Text PDFMaterials (Basel)
March 2024
Grupo de Investigación en Ingeniería Biomédica (GIBEC), Universidad EIA, Envigado 055428, Colombia.
Diabetic retinopathy (RD) is a microvascular disease that can cause the formation of fragile neovessels, increasing the risk of hemorrhages and leading to vision loss. Current therapies are based on the intravitreal injection of anti-VEGF (vascular endothelial growth factor), which is invasive and can cause secondary effects. The development of new treatments that complement the current therapies is necessary to improve the patient's outcomes.
View Article and Find Full Text PDFDrug Dev Ind Pharm
February 2021
Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and Nutricosmetics, Freie University of Berlin, Berlin, Germany.
Objective: Cavi-precipitation has the potential to generate drug nanocrystals very efficiently. Achieving smaller than 100 nm particle size for organic drug substances still remained a challenge. The objective of this study was to demonstrate if cavi-precipitation technology can be used to generate smaller than 100 nm drug nanocrystal particle.
View Article and Find Full Text PDFPharmaceutics
December 2019
College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea.
The purpose of this study was to develop a resveratrol nanosuspension with enhanced oral bioavailability, based on an understanding of the formulation and process parameters of nanosuspensions and using a quality by design (QbD) approach. Particularly, the antisolvent method, which requires no solvent removal and no heating, is newly applied to prepare resveratrol nanosuspension. To ensure the quality of the resveratrol nanosuspensions, a quality target product profile (QTPP) was defined.
View Article and Find Full Text PDFInt J Pharm
October 2019
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:
The purpose of this study was to explore the influence of stabilizer type and concentration on the properties of spray dried nanosuspension-in-microparticles (NS-in-MPs) for inhalation. Taking resveratrol (RES) as a Biopharmaceutical Classification System II (BCS II) model drug, the RES containing nanosuspensions were fabricated by high pressure homogenization method with different stabilizers including sodium dodecyl sulphate (SDS), sodium alginate (SA), chitosan (CS) and polyvinyl alcohol (PVA). Then, the nanosuspensions were spray dried with mannitol to obtain inhalable NS-in-MPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!