Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alveolar epithelial cell (AEC) injury is central to the pathogenesis of pulmonary fibrosis. Epithelial FGF (fibroblast growth factor) signaling is essential for recovery from hyperoxia- and influenza-induced lung injury, and treatment with FGFs is protective in experimental lung injury. The cell types involved in the protective effect of FGFs are not known. We hypothesized that FGF signaling in type II AECs (AEC2s) is critical in bleomycin-induced lung injury and fibrosis. To test this hypothesis, we generated mice with tamoxifen-inducible deletion of FGFR1-3 (fibroblast growth factor receptors 1, 2, and 3) in surfactant protein C-positive (SPC) AEC2s (SPC triple conditional knockout [SPC-TCKO]). In the absence of injury, SPC-TCKO mice had fewer AEC2s, decreased (surfactant protein C gene) expression, increased alveolar diameter, and increased collagen deposition. After intratracheal bleomycin administration, SPC-TCKO mice had increased mortality, lung edema, and BAL total protein, and flow cytometry and immunofluorescence revealed a loss of AEC2s. To reduce mortality of SPC-TCKO mice to less than 50%, a 25-fold dose reduction of bleomycin was required. Surviving bleomycin-injured SPC-TCKO mice had increased collagen deposition, fibrosis, and ACTA2 expression and decreased epithelial gene expression. Inducible inactivation of individual or revealed that , but not , was responsible for the increased mortality and lung injury after bleomycin administration. In conclusion, AEC2-specific FGFR2 is critical for survival in response to bleomycin-induced lung injury. These data also suggest that a population of SPC AEC2s require FGFR2 signaling for maintenance in the adult lung. Preventing epithelial FGFR inhibition and/or activating FGFRs in alveolar epithelium may therefore represent a novel approach to treating lung injury and reducing fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193788 | PMC |
http://dx.doi.org/10.1165/rcmb.2019-0079OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!