Xylem and phloem sap flows in an intact, young Japanese zelkova tree (Zelkova serrata (Thunb.) Makino) growing outdoors were measured using magnetic resonance imaging (MRI). Two propagator-based sequences were developed for q-space imaging: pulse field gradient (PFG) with spin echo (PFG-SE) and stimulated echo (PFG-STE), which were used for xylem and phloem flow measurements, respectively. The data evaluation methods were improved to image fast xylem flow and slow phloem flow. Measurements were taken every 2-3 h for several consecutive days in August 2016, and diurnal changes in xylem and phloem sap flows in a cross-section of the trunk were quantified at a resolution of 1 mm2. During the day, apparent xylem flow volume exhibited a typical diurnal pattern following a vapor pressure deficit. The velocity mapping of xylem sap flow across the trunk cross section revealed that the greatest flow volume was found in current-year earlywood that had differentiated in April-May. The combined xylem flow in the 1- and 2-year-old annual rings also contributed to one-third of total sap flow. In the phloem, downward sap flow did not exhibit diurnal changes. This novel application of MRI in visualization of xylem and phloem sap flow by MRI is a promising tool for in vivo study of water transport in mature trees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpz120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!