Purpose: To demonstrate the production of inflammatory mediators by cells located in bone marrow spaces inside rodent menisci.

Methods: Mice subjected to transection of the medial collateral and anterior cruciate ligaments and meniscotomy (osteoarthritis model) or to a sham procedure, as well as non-operated (naive) mice and rats, had knee joints excised. Tissues were stained with hematoxylin-eosin and tartrate-resistant acid phosphatase (TRAP). CD68+ cells, inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, and tumor necrosis factor (TNF) expression were detected using immunohistochemistry.

Results: Lamellar ossified areas, bone-entrapped osteocytes and bone marrow spaces were found inside menisci of one week up to 6 months-old naïve mice, regardless of gender. Menisci from naive rats also showed the same pattern with bone marrow areas. CD68+ cells were identified in bone marrow areas inside the meniscus of mice. TRAP+ osteoclasts, and hematogenous precursors expressing IL-1β, TNF, and iNOS were identified inside bone marrow areas in meniscal samples from both naïve and sham operated mice. Quantitative immunoexpression of IL-1 β, TNF and iNOS was more intense, P = 0.0194, 0.0293, 0.0124, respectively, in mouse knees from mice sacrificed 49 days after being subjected to an osteoarthritis (OA) model as compared to sham operated animals.

Conclusion: We provide novel data showing that rodent menisci display bone marrow areas with cells able to produce inflammatory mediators. Immunoexpression of inflammatory mediators in those bone marrow areas is significantly more pronounced in mice subjected to experimental OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924665PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226986PLOS

Publication Analysis

Top Keywords

bone marrow
32
marrow areas
24
inflammatory mediators
16
bone
8
mediators bone
8
marrow
8
areas inside
8
inside meniscus
8
marrow spaces
8
spaces inside
8

Similar Publications

Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).

Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.

View Article and Find Full Text PDF

Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals.

Stem Cell Rev Rep

January 2025

Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.

View Article and Find Full Text PDF

Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.

View Article and Find Full Text PDF

Objective: This study aimed to explore and evaluate a novel method for diagnosing patellar chondromalacia using radiomic features from patellar sagittal T2-weighted images (T2WI).

Methods: The experimental data included sagittal T2WI images of the patella from 40 patients with patellar chondromalacia and 40 healthy volunteers. The training set comprised 30 cases of chondromalacia and 30 healthy volunteers, while the test set included 10 cases of each.

View Article and Find Full Text PDF

The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!