Fast photochemical oxidation of proteins (FPOP) is a protein footprinting technique that is being increasingly used in MS-based proteomics. FPOP is utilized to study protein-protein interactions, protein-ligand interactions, and protein conformational dynamics. This method has recently been extended to protein labeling in live cells (IC-FPOP), allowing the study of protein conformations in the complex cellular environment. Traditionally, IC-FPOP has been executed using a single cell flow system, in which hydrodynamic focusing drives cells along in a single file line, keeping the cells from clumping and thus ensuring equal exposure to the laser irradiation required for photochemical oxidation. Here, we introduce a novel platform that allows IC-FPOP to occur in a sterile incubation system complete with a mobile stage for XY movement, peristaltic pumps equipped with perfusion lines for chemical transport, and mirrors for laser beam guidance. This new system, called Platform Incubator with movable XY stage (PIXY), also utilizes software enabling automated communication between equipment and execution of the entire system. Further, comparison with a standard IC-FPOP flow system results reveal that this platform can successfully be used in lieu of the flow system while also decreasing the time to complete analysis of a single sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944481PMC
http://dx.doi.org/10.1021/acs.analchem.9b04933DOI Listing

Publication Analysis

Top Keywords

photochemical oxidation
12
flow system
12
fast photochemical
8
oxidation proteins
8
platform incubator
8
incubator movable
8
movable stage
8
system
6
implementing in-cell
4
in-cell fast
4

Similar Publications

The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.

View Article and Find Full Text PDF

Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization.

Acc Chem Res

January 2025

Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.

ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols.

View Article and Find Full Text PDF

Based on the concept "Derived from Agroforestry, belong to (Servicing) Agroforestry", we herein achieved the tandem catalytic transformation of lignin to phenolic aryl acrylic esters, which can work as plant growth regulators. The transformation involves the first catalytic oxidative fractionation (COF) of lignin into aromatic aldehydes, which can further undergo Knoevenagel condensation with acids/esters with active Cα-H to generate the phenolic aryl acrylic esters. For the first lignin transformation, the Cu salt (CuSO4) in a 7.

View Article and Find Full Text PDF

Catalyst-Free Photooxidative N-Acylation of Azoles with Aldehydes.

Chemistry

January 2025

Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, 215123, Suzhou, CHINA.

A catalyst-free photochemical N-acylation of azoles with aldehydes has been developed using inexpensive BrCCl3 as the oxidant. This transition-metal- and photocatalyst-free amidation proceeded efficiently with a wide variety of substrates to give the corresponding N-acylazoles, including for the late modification of pharmaceutically active molecules, and on a gram-scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!