Laboratory evidence has demonstrated the antimicrobial effect of Melaleuca alternifolia (MEL) against oral microorganisms. This randomized, double-blind, crossover clinical trial, compared the anti-biofilm and anti-inflammatory effects of MEL nanoparticles with 0.12% chlorhexidine gluconate (CHX) on biofilm-free (BF) and biofilm-covered (BC) surfaces. Before each experimental period, the participants refrained from all oral hygiene practices for 72 hours. The 60 participants were randomly assigned to professional prophylaxis in two quadrants (Q1-Q3 or Q2-Q4), and rinsed with MEL or CHX for four days. The Quigley & Hein plaque index (QHPI), gingival crevicular fluid (GCF) volume, and participants' perceptions were assessed. CHX showed significantly lower mean QHPI on BF (2.65 ± 0.34 vs. 3.34 ± 0.33, p < 0.05) and BC surfaces (2.84 ± 0.37 vs. 3.37 ± 0.33, p < 0.05). Intragroup comparisons indicated reductions in GCF in all the groups, with significant differences only for CHX on BF surfaces (p < 0.05). Intergroup comparisons revealed no significant differences (p > 0.05). Based on individual perceptions, CHX had better taste and biofilm control, but resulted in a greater change in taste. Nevertheless, MEL demonstrated anti-inflammatory effects similar to those of CHX. Further clinical trials testing different protocols, concentrations and follow-up periods are required to establish its clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1590/1807-3107bor-2019.vol33.0062DOI Listing

Publication Analysis

Top Keywords

anti-biofilm anti-inflammatory
8
anti-inflammatory effects
8
033 005
8
chx
6
anti-inflammatory herbal
4
herbal nanoparticle
4
nanoparticle mouthwash
4
mouthwash randomized
4
randomized crossover
4
crossover trial
4

Similar Publications

Periodontitis is a microbe-driven inflammatory disease leading to bone resorption and tissue destruction. We propose a dual-functional nanogel complex armed with the antimicrobial drug triclosan (TCS) and the pro-angiogenesis medication deferoxamine (DFO) for combating microbial pathogens and promoting tissue regeneration. The nanogel system (NG-TCS-DFO) that we fabricated from linear polyglycerol exhibits well-defined spherical morphology and a positively charged surface for bacteria adhesion.

View Article and Find Full Text PDF

and , key members of the ESKAPE group of hospital-acquired pathogens, are driving forces behind numerous infections due to their potent biofilm formation and the growing threat of antimicrobial resistance. Ferulic acid (FA) is known for its strong antioxidant properties and is recognized for its numerous physiological benefits, including anti-inflammatory, antimicrobial, anticancer, and antidiabetic effects. The current investigation delves into the antimicrobial and antibiofilm ability of FA against and .

View Article and Find Full Text PDF

Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method.

View Article and Find Full Text PDF

Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.

View Article and Find Full Text PDF

Metal nanoparticles have attained much popularity due to their low toxicity, economic feasibility, and eco-friendly nature. The present study focuses on the synthesis of silver and zinc nanoparticles from Vitex altissima leaf extract, further characterized by UV/Vis spectral analysis, Powder-x-ray diffraction (XRD), FE-SEM, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential. Synthesized silver and zinc nanoparticles were screened for antioxidant, anti-inflammatory, antibacterial, and anti-biofilm activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!