Dual-Readout Tyrosinase Activity Assay Facilitated by a Chromo-Fluorogenic Reaction between Catechols and Naphthoresorcin.

Anal Chem

State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.

Published: January 2020

Analyte-responsive chromo-fluorogenic reactions under accessible conditions are important for designing small-molecule spectroscopic probes. We describe a series of newly constructed motifs based on the chromo-fluorogenic reaction between catechol derivatives (typically hydroxytyrosol, dopamine, and levodopa) and naphthoresorcin (NR) in aqueous solution under ambient conditions. The weakly absorptive and fluorogenic catechols/NR was converted to products having visible absorption and bright fluorescence within several minutes. The chromo-fluorophores produced from this reaction had a maximum absorbance at 458 nm and emission at 480 nm with high fluorescence quantum yields (30-84%). Inspired by the tyrosinase-catalyzed hydroxylation of monophenols to catechols, the tyrosinase-enabled chromo-fluorogenic reaction was verified by using monophenol (typically tyrosol) as the substrate. In this regard, a dual-readout tyrosinase activity assay was developed by virtue of the in situ "turn-on" optical signals. Furthermore, a test of tyrosinase inhibition, by using a common inhibitor kojic acid, demonstrated the potential of the chromo-fluorogenic reaction for developing other tyrosinase related assays and signal transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b05204DOI Listing

Publication Analysis

Top Keywords

chromo-fluorogenic reaction
16
dual-readout tyrosinase
8
tyrosinase activity
8
activity assay
8
chromo-fluorogenic
5
reaction
5
assay facilitated
4
facilitated chromo-fluorogenic
4
reaction catechols
4
catechols naphthoresorcin
4

Similar Publications

A simple, tailor-made, novel chemosensor based on 1,10-phenanthroline Schiff base incorporating N, N-Diethylamino salicylaldehyde (1) was designed and synthesized. The sensing ability of chemosensor 1 was tested via colorimetric, UV-Vis and fluorescence spectroscopy. Chemosensor 1 could effectively and specifically detect diethylchlorophosphate (DCP) in acetonitrile displaying naked eye colour change from pale yellow to dark yellow while fluorogenic colour changes from blue to pink fluorescence (365 nm UV lamp irradiation).

View Article and Find Full Text PDF

Sensing trivalent chromium ion (Cr(III)) is widely applied in different areas, such as clinical analysis, marine, environmental monitoring, or even chemical industry applications. Cr(III) has a significant role in the physiological process of human life. It is classified as an essential micronutrient for living organisms.

View Article and Find Full Text PDF

A simple chromo-fluorogenic chemodosimeter probe, α-benzithiazolyl 3-pyrrolyl BODIPY, was synthesized by reacting α-formyl 3-pyrrolyl BODIPY with 2-aminothiophenol in DMF at reflux under basic conditions. The probe was structurally characterized by X-ray, HR-MS, and 1D & 2D NMR techniques. The X-ray structure revealed that the appended pyrrole was almost in the plane with a small deviation of 12.

View Article and Find Full Text PDF

Fabrication of a paper-based facile and low-cost microfluidic device and digital imaging technique for point-of-need monitoring of hypochlorite.

Analyst

August 2023

Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India.

Lab-on-a-paper-based devices are promising alternatives to the existing arduous techniques for point-of-need monitoring. The present work reports an instant and facile method to produce a microfluidic paper-based analytical device (μPAD). The fabricated μPAD has been used to detect hypochlorite (OCl) by incorporating newly synthesized chromo-fluorogenic ratiometric probes 1 and 2 into the sample reception zone.

View Article and Find Full Text PDF

Selective recognition of ammonia and aliphatic amines by C-N fused phenazine derivative: A hydrogel based smartphone assisted 'opto-electronic nose' for food spoilage evaluation with potent anti-counterfeiting activity and a potential prostate cancer biomarker sensor.

Anal Chim Acta

April 2022

Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India; Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India. Electronic address:

In real day scenario, it is an urge to provide a single solution of multiple problems. In this regard, herein rapid, selective and highly efficient chromo-fluorogenic detection of ammonia/aliphatic amines over aromatic amines has been investigated by means of a novel "opto-electronic nose", CN-2, synthesized in a single-step via multiple inter/intramolecular C-N fusion reactions. The in-situ generated mono-protonated CN-2 can selectively detect primary to secondary to even tertiary aliphatic amines over aromatic amines within ∼40 S with extremely low detection threshold values of 27.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!