Evidence of linked selection on the Z chromosome of hybridizing hummingbirds.

Evolution

Department of Biology, University of Washington, Seattle, Washington, 97403-1201.

Published: April 2020

Levels of genetic differentiation vary widely along the genomes of recently diverged species. What processes cause this variation? Here, I analyze geographic population structure and genome-wide patterns of variation in the Rufous, Allen's, and Calliope Hummingbirds (Selasphorus rufus/Selasphorus sasin/Selasphorus calliope) and assess evidence that linked selection on the Z chromosome drives patterns of genetic differentiation in a pair of hybridizing species. Demographic models, introgression tests, and genotype clustering analyses support a reticulate evolutionary history consistent with divergence during the late Pleistocene followed by gene flow across migrant Rufous and Allen's Hummingbirds during the Holocene. Relative genetic differentiation ( ) is elevated, and within-population diversity (π) is depressed on the Z chromosome in all interspecific comparisons. The ratio of Z to autosomal within-population diversity is much lower than that expected from population size effects alone, and Tajima's D is depressed on the Z chromosome in S. rufus and S. calliope. These results suggest that conserved structural features of the genome play a prominent role in shaping genetic differentiation through the early stages of speciation in northern Selasphorus hummingbirds, and that the Z chromosome is a likely site of genes underlying behavioral and morphological variation in the group.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.13888DOI Listing

Publication Analysis

Top Keywords

genetic differentiation
16
evidence linked
8
linked selection
8
selection chromosome
8
rufous allen's
8
within-population diversity
8
depressed chromosome
8
chromosome
5
chromosome hybridizing
4
hummingbirds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!