[Mn(bpy)(CO)3Br] is recognized as a benchmark electrocatalyst for CO2 reduction to CO, with the doubly reduced [Mn(bpy)(CO)3]- proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO)4]+, thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO)4][SbF6] (1) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO2 to CO in the presence of H2O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g., [Mn(bpy)(CO)3Br] (2) and [Mn(bpy)(CO)3(MeCN)][PF6] (3). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1, producing a [Mn(bpy)(CO)3(MeCN)]+ species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO2 reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt04150hDOI Listing

Publication Analysis

Top Keywords

co2 reduction
8
reduction
5
reduction-induced dissociation
4
dissociation [mnbpyco][sbf]
4
complex
4
[mnbpyco][sbf] complex
4
complex relevance
4
relevance electrocatalytic
4
electrocatalytic reduction
4
reduction [mnbpyco3br]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!