The immense need to build highly efficient catalysts has always been at the forefront of environmental remediation research. Herein, we have synthesized dual-phase copper oxide containing Cu2O and CuO originating from the same reaction using hexamethyltetramine (HMT). Simultaneously, we coupled it with g-C3N4 (g-CN), constructing a triple synergetic heterojunction, which is reported significantly less often in the literature. Hydrothermal reactions led to the formation of various catalysts, namely, Ag-Cu2O-CuO-gCN (ACCG), Ag-CuO-gCN (ACG), Ag-Cu2O-CuO (ACC) and Ag-CuO (AC), which were thoroughly characterized via XRD and FESEM to gain structural, crystallographic and morphological insights. We clearly observed the pure phase formation of the catalysts and the development of sheet-like CuO and truncated octahedrons of Cu2O fused together within the g-CN framework. Also, XPS studies revealed the presence of copper in two different oxidation states, namely, Cu2+ and Cu+. BET analysis was performed to analyze the surface area and pore volume of the catalysts, which play very significant roles in catalytic reduction. The catalytic efficiencies of the catalysts were evaluated via the reduction of 100 ppm 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) without using any light irradiation. The most efficient catalyst was ACCG, revealing the reduction of 4-NP in 4 minutes. Both Cu2O and g-CN played significant roles in reduction, following zero-order kinetics, unlike that which is often reported in the literature. We also evaluated the catalytic reduction with different concentrations of 4-NP and tuning the catalyst amount as well. A mechanism was postulated based on the XRD results of the post-catalytic reduction catalyst. The ACCG catalyst was also successfully tested as an effective dopamine sensor. The GC/ACCG electrode exhibited oxidation peak current density of 0.28 mA cm-2, which was much higher than those of the other catalysts. This unique combination of pure phase materials to form a composite as an effective catalyst as well as a sensor is an exclusive effort towards environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt04309hDOI Listing

Publication Analysis

Top Keywords

environmental remediation
8
reported literature
8
formation catalysts
8
pure phase
8
catalytic reduction
8
catalyst accg
8
catalysts
7
reduction
7
catalyst
5
bi-functional ag-cuo/g-cn
4

Similar Publications

Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region.

View Article and Find Full Text PDF

Ionomeric Nanofibers: A Versatile Platform for Advanced Functional Materials.

Polymers (Basel)

December 2024

Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.

The one-dimensional nanomaterials known as nanofibers have remarkable qualities, such as large surface areas, adjustable porosity, and superior mechanical strength. Ionomers, types of polymers, have ionic functional groups that give them special properties, including high mechanical strength, water absorption capacity, and ionic conductivity. Integrating ionomers and nanofibers with diverse materials and advanced methodologies has been shown to improve the mechanical strength, processing capacity, and multifunctional attributes of ionomeric nanofibers.

View Article and Find Full Text PDF

Novel Nanocomposites and Biopolymer-Based Nanocomposites for Hexavalent Chromium Removal from Aqueous Media.

Polymers (Basel)

December 2024

Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 2 Piata Victoriei, 300006 Timișoara, Romania.

Designing new engineered materials derived from waste is essential for effective environmental remediation and reducing anthropogenic pollution in our economy. This study introduces an innovative method for remediating metal-contaminated water, using two distinct waste types: one biowaste (eggshell) and one industrial waste (fly ash). We synthesized three novel, cost-effective nanoadsorbent types, including two new tertiary composites and two biopolymer-based composites (specifically k-carrageenan and chitosan), which targeted chromium removal from aqueous solutions.

View Article and Find Full Text PDF

Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR.

Plants (Basel)

December 2024

Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt.

Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.

View Article and Find Full Text PDF

Bacteria of the genus are the most studied microorganisms that biodegrade persistent perfluoroorganic pollutants, and the research of their application for the remediation of environmental sites using biotechnological approaches remains relevant. The aim of this study was to investigate the ability of a known destructor of perfluorooctane sulfonic acid from the genus to accelerate and enhance the destruction of long-chain perfluorocarboxylic acids (PFCAs), specifically perfluorooctanoic acid and perfluorononanoic acid, in water and soil in association with the strain . 5(3), which has previously confirmed genetic potential for the degrading of PFCAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!