The sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. Whereas contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This reuptake of calcium is catalyzed by the sarcoendoplasmic reticulum Ca-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, the most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn-Ala and Thr-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed two-dimensional crystals of SERCA in the presence of wild-type SLN by electron cryomicroscopy. The fundamental units of the crystals are antiparallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of an SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, although the interaction appeared to be indirect and mediated by an additional density consistent with an SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and an SLN monomer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976813 | PMC |
http://dx.doi.org/10.1016/j.bpj.2019.11.3385 | DOI Listing |
Gynecol Oncol
January 2025
Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
Objective: Treatment approaches for endometrial cancer became more personalized in the last decade, mainly due to two key advancements - sentinel lymph node (SLN) mapping and molecular classification. However, their prognostic interaction remains relatively unexplored.
Methods: This retrospective cohort study included patients with endometrial cancer, who underwent surgical treatment including SLN mapping at the Bern University Hospital, Switzerland.
Head Neck
January 2025
Service of Oral and Maxillofacial Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
Objectives: To assess the usefulness of sentinel lymph node biopsy (SLNB) in patients with early-stage oral squamous cell carcinoma (OSCC).
Materials And Methods: Seventy-five patients (mean age 62 years) diagnosed with cT1-2 N0 underwent SLNB with Tc, lymphoscintigraphy/SPECT-CT, and gamma probe detection with intraoperative histological examination of the resected sentinel lymph nodes (SLNs). Elective neck dissection was performed during the same surgical procedure of primary tumor resection when malignant deposits were detected microscopically.
JMIRx Med
January 2025
Department of Oncology, Radiotherapy and Plastic and Reconstructive Surgery, Sechenov University, Bolshaya Pirogovskaya, 6c1, Moscow, 119021, Russian Federation, 7 9013488810.
Intro: Breast cancer is the leading cause of morbidity and mortality worldwide. Accurate sentinel lymph node (SLN) mapping is crucial for staging and treatment planning in early-stage breast cancer. Indocyanine green (ICG) has emerged as a promising agent for fluorescence imaging in SLN mapping.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA. Electronic address:
Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160014 India.
Nanotechnology has gained recognition as the next uprising technology in numerous sectors, together with food industry and agriculture. Diminution of particle size to nanoscale range enhances the surface area, eventually surface-to-volume ratio, subsequently enhances their reactivity by several times, modifying optical, electrical, and mechanical features. Nanotechnology can also modify the aqueous solubility, thermal stability, and bioavailability in oral delivery of bioactive nutraceuticals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!