Chemodynamic therapy (CDT) has demonstrated new possibilities for selective and logical cancer intervention by specific manipulation of dysregulated tumorous free radical homeostasis. Current CDT methods largely rely on conversion of endogenous hydrogen peroxide (HO) into highly toxic hydroxyl radicals via classical Fenton or Haber-Weiss chemistry. However, their anticancer efficacies are greatly limited by the requirement of strong acidity for efficient chemical reactions, insufficient tumorous HO, and upregulated antioxidant defense to counteract free radical-caused oxidative damage. Here, we present a new concept whereby bioorthogonal chemistry and prodrug are combined to create a new type of aptamer drug conjugate (ApDC): aptamer-prodrug conjugate (ApPdC) micelle for improved and cancer-targeted CDT. The hydrophobic prodrug bases can not only promote self-assembly of aptamers but also act as free radical generators via bioorthogonal chemistry. In depth mechanistic studies reveal that, unlike traditional CDT systems, ApPdC micelles enable in situ activation and self-cycling generation of toxic C-centered free radicals in cancer cells through cascading bioorthogonal reactions, with no dependence on either HO or pH, yet concurrently with diminished cancerous antioxidation by GSH depletion for a synergistic CDT effect. We expect this work to provide new insights into the design of targeted cancer therapies and studies of free radical-related molecular mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b10755 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!