β-Cyanoalanine synthase (β-CAS) is an enzyme involved in cyanide detoxification. However, little information is available regarding the effects of β-CAS activity changes on plant resistance to environmental stress. Here, we found that β-CAS overexpression (CAS-OE) improves the resistance of tobacco plants to salt stress, whereas plants with β-CAS silencing suffer more oxidative damage than wild-type plants. Notably, blocking respiration by the alternative oxidase (AOX) pathway significantly aggravates stress injury and impairs the salt stress tolerance mediated by CAS-OE. These findings present novel insights into the synergistic effect between β-CAS and AOX in protecting plants from salt stress, where β-CAS plays a vital role in restraining cyanide accumulation, and AOX helps to alleviate the toxic effect of cyanide.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.13723DOI Listing

Publication Analysis

Top Keywords

salt stress
16
β-cyanoalanine synthase
8
alternative oxidase
8
oxidative damage
8
stress β-cas
8
plants salt
8
stress
6
β-cas
6
overexpressed β-cyanoalanine
4
synthase functions
4

Similar Publications

Hypertension (HTN) is recognized as a major modifiable risk factor for cardiovascular deaths in South Asia. Our aim was to furnish a comprehensive analysis of HTN prevalence, trends, control efforts, awareness, barriers in care delivery and associated factors, based on nationally derived evidence in Sri Lanka. A systematic search of online databases (PubMed, Web of Science, Scopus), local journals and repositories yielded 6704 results, of which 106 were included.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

Early language is shaped by parent-child interactions and has been examined in relation to maternal psychopathology and parenting stress. Minimal work has examined the relation between maternal emotion dysregulation and toddler vocabulary development. This longitudinal study examined associations between maternal emotion dysregulation prenatally, maternal everyday stress at 7 months postpartum, and toddler vocabulary at 18 months.

View Article and Find Full Text PDF

Roots absorb water and nutrients from the soil, support the plant's aboveground organs, and detect environmental changes, making them crucial targets for improving crop productivity. Roots are particularly sensitive to soil salinity, a major abiotic stress that poses a serious threat to global agriculture. In response to salt stress, plants suppress root meristem size, thus reducing root growth; however, the mechanisms underlying this growth restriction remain unclear.

View Article and Find Full Text PDF

LbHKT1;1 Negatively Regulates Salt Tolerance of Limonium bicolor by Decreasing Salt Secretion Rate of Salt Glands.

Plant Cell Environ

January 2025

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China.

The HKT-type proteins have been extensively studied and have been shown to play important roles in long-distance Na transport, maintaining ion homoeostasis and improving salt tolerance in plants. However, there have been no reports on the types, characteristics and functions of HKT-type proteins in Limonium bicolor, a recretohalophyte species with the typical salt gland structure. In this study, five LbHKT genes were identified in L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!