Phytochemicals Involved in Plant Resistance to Leporids and Cervids: a Systematic Review.

J Chem Ecol

Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, QC, Québec, Canada.

Published: January 2020

Non-nutritive phytochemicals (secondary metabolites and fibre) can influence plant resistance to herbivores and have ecological impacts on animal and plant population dynamics. A major hindrance to the ecological study of these phytochemicals is the uncertainty in the compounds one should measure, especially when limited by cost and expertise. With the underlying goal of identifying proxies of plant resistance to herbivores, we performed a systematic review of the effects of non-nutritive phytochemicals on consumption by leporids (rabbits and hares) and cervids (deer family). We identified 133 out of 1790 articles that fit our selection criteria (leporids = 33, cervids = 97, both herbivore types = 3). These articles cover 18 species of herbivores, on four continents. The most prevalent group of phytochemicals in the selected articles was phenolics, followed by terpenes for leporids and by fibre for cervids. In general, the results were variable but phenolic concentration seems linked with high resistance to both types of herbivores. Terpene concentration is also linked to high plant resistance; this relationship seems driven by total terpene content for cervids and specific terpenes for leporids. Tannins and fibre did not have a consistent positive effect on plant resistance. Because of the high variability in results reported and the synergistic effects of phytochemicals, we propose that the choice of chemical analyses must be tightly tailored to research objectives. While researchers pursuing ecological or evolutionary objectives should consider multiple specific analyses, researchers in applied studies could focus on a fewer number of specific analyses. An improved consideration of plant defence, based on meaningful chemical analyses, could improve studies of plant resistance and allow us to predict novel or changing plant-herbivore interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-019-01130-zDOI Listing

Publication Analysis

Top Keywords

plant resistance
24
plant
8
systematic review
8
non-nutritive phytochemicals
8
resistance herbivores
8
terpenes leporids
8
concentration linked
8
linked high
8
chemical analyses
8
specific analyses
8

Similar Publications

Carvacrol: Innovative Synthesis Pathways and Overview of its Patented Applications.

Recent Pat Biotechnol

January 2025

Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), P.O. Box 592 Mghila, Beni Mellal 23000, Morocco.

Aim: This research concerns the patentability of carvacrol; it could be helpful for researchers to easily identify any innovation in the biotechnological application of this monoterpene as well as other similar compounds.

Background: Like thyme or oregano, several plants in the Lamiaceae family produce carvacrol. It is one of the secondary metabolites with several biological activities, including the improvement in plants' resistance and their protection.

View Article and Find Full Text PDF

Controlled-release nitrogen combined with ordinary nitrogen fertilizer improved nitrogen uptake and productivity of winter wheat.

Front Plant Sci

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.

Background: Blending controlled-release nitrogen fertilizer (CRNF) with ordinary nitrogen fertilizer (ONF) is a strategic approach to improve winter wheat nutrient management. This blend provides nitrogen (N) to winter wheat in a balanced and consistent manner, ensuring long-term growth, reducing nutrient loss due to leaching or volatilization, and increasing N use efficiency (NUE).

Aims: CRNF aims to enhance N application suitability, optimizes soil nutrient dynamics, and its widespread use can boost crop NUE and yield.

View Article and Find Full Text PDF

Citrus Huanglongbing (HLB) represents a significant threat to the citrus industry, mainly caused by the phloem-limited bacterium Liberibacter asiaticus (Las). In this review, we summarize recent advances in understanding the relationship between citrus and Las, particularly examining the functions of Sec-dependent effectors (SDEs) and non-classically secreted proteins (ncSPs) in virulence, as well as their targeted interactions with citrus. We further investigate the impact of SDEs on various physiological processes, including systemic acquired resistance (SAR), reactive oxygen species (ROS) accumulation, vesicle trafficking, callose deposition, cell death, autophagy, chlorosis and flowering.

View Article and Find Full Text PDF

Background: Polydatin (PD), also known as tiger cane glycoside, is a natural compound extracted from the Japanese knotweed plant, which is often referred to as white resveratrol. It exhibits anti-inflammatory, antioxidant, and anti-apoptotic effects in the treatment of various diseases. However, the potential molecular mechanisms of PD in osteoarthritis have not been clearly elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!