AI Article Synopsis

Article Abstract

The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO), polystyrene (PS) and silicon dioxide (SiO), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923483PMC
http://dx.doi.org/10.1038/s41598-019-56037-2DOI Listing

Publication Analysis

Top Keywords

marine benthic
8
microbial eukaryote
8
enm
5
nanoparticle-biological interactions
4
marine
4
interactions marine
4
benthic foraminifer
4
foraminifer adverse
4
adverse effects
4
effects engineered
4

Similar Publications

Levels and oxidative toxicity of microplastics and perfluoroalkyl substances (PFASs) in different tissues of sea cucumber (Holothuria tubulosa).

Sci Total Environ

January 2025

School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy. Electronic address:

Nowadays, marine pollution is a global problem which finds in microplastics (MPs) and emerging pollutants, such as perfluoroalkyl substances (PFASs), two of the main culprits. Sea cucumbers are a group of marine benthic invertebrates that show ecological, economic and social relevance. As deposit/suspension feeders, sea cucumbers show high susceptibility to bioaccumulate marine pollutants, including PFASs and MPs.

View Article and Find Full Text PDF

Exploring the relationship between upwelling intensity and socio-ecological attributes of marine exploitation areas for benthic resources (MEABRs), along the southern Humboldt Current system.

J Environ Manage

January 2025

Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Chile. Electronic address:

The Eastern Boundary Upwelling Systems (EBUS) sustains some of the most productive marine systems on Earth. Within each of these systems, the upwelling process exhibits spatial and temporal variation resulting in marked differences in upwelling intensity and seasonality along extensive coastlines. The study of this variation is well needed, given the magnitude of the services provided by upwelling, and the impending impacts of global warming on EBUS.

View Article and Find Full Text PDF

From plankton to fish: The multifaceted threat of microplastics in freshwater environments.

Aquat Toxicol

January 2025

College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China. Electronic address:

The detrimental impact of emerging pollutants, specifically microplastics (MPs), on the ecological environment are receiving increasing attention. Freshwater ecosystems serve as both repositories for terrestrial microplastic (MP) sources and conduits for their subsequent entry into marine environments. Consequently, it is imperative to rigorously investigate the toxicological effects of MPs on freshwater ecosystems.

View Article and Find Full Text PDF

Coastal eutrophication transforms shallow micro-benthic reef communities.

Sci Total Environ

January 2025

Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.

Article Synopsis
  • Coral reefs worldwide are suffering from coastal eutrophication, leading to decreased coral cover and increased harmful organisms like algae and invertebrates.
  • The study focuses on how micro-benthic communities, specifically foraminifera, diatoms, and bacteria, are influenced by turbidity associated with eutrophication in the Spermonde Archipelago, using environmental DNA analysis.
  • Findings indicate that shallower reef flat communities are much more affected by turbidity than deeper reef slope communities, with foraminifera and diatom ESVs serving as indicators of varying turbidity levels, thus highlighting the influence of local environmental conditions on these micro-benthic communities.
View Article and Find Full Text PDF

Isotopic variability of the invasive blue crab Callinectes sapidus in the Gulf of Cadiz: Impacts and implications for coastal ecosystem management.

J Environ Manage

January 2025

Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui, 2, Puerto Real, Cadiz, 11510, Spain; Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain. Electronic address:

The variability in trophic position and carbon isotopic signatures can provide information about their dietary flexibility and its ability to adapt to changing environmental conditions. The impact of the invasive blue crab Callinectes sapidus was assessed by estimating its trophic position and isotopic niche using stable isotopes (δ³C, δ⁵N, δ³⁴S) across different invaded Atlantic coastal areas. This study, the first of its kind in the eastern Atlantic range, reveals the crab's omnivorous behavior with a wide trophic position (TP = 2-4), consistent with findings from its native range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!