Octenylsuccinylation differentially modifies the physicochemical properties and digestibility of small granule starches.

Int J Biol Macromol

Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: February 2020

The impact of starch granule size on 2-octenyl-1-succinic anhydride (OSA) modification remains unclear. To investigate changes of structural, physicochemical, digestibility and emulsifying properties due to OSA modification, five small granule starches (from wheat, rice, oat, quinoa and amaranth) were selected and compared with a standard large granule starch (waxy maize). OSA starches were prepared in 3% (volume by weight) OSA reagent with continuous stirring for 6 h under constant pH of 8.5. The hypothesis was that property changes induced by OSA treatment can be more efficiently achieved in small granule starches (< 10 μm diameter). Small granule OSA starches generally had greater emulsion stability, swelling power and digestibility after gelatinization than waxy maize OSA starch, likely due to the unique physical properties and specific molecular structures of small granule starches, i.e. low sedimentation coefficient, low DP of amylopectin and highly branched amylopectin with short chain length. Granule sizes of OSA starches significantly impact on swelling power, amylose leaching, digestibility and emulsifying capacity, but to different extents depending on botanical origin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.129DOI Listing

Publication Analysis

Top Keywords

small granule
20
granule starches
16
osa starches
12
granule
8
starches impact
8
osa
8
osa modification
8
digestibility emulsifying
8
waxy maize
8
maize osa
8

Similar Publications

Background: MRI offers potential noninvasive detection of Alzheimer's micropathology. The AD hippocampus exhibits microscopic pathological changes such as tau tangles, iron accumulation and late-stage amyloid. Validating these changes from ultra-high-resolution ex-vivo MRI through histology is challenging due to nonlinear 3D deformations between MRI and histological samples.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Aquinnah Pharmaceuticals, Cambridge, MA, USA.

Background: Increasing data indicates that the pathophysiology of microtubule associated protein tau is mediated by its interactions with RNA and RNA binding proteins via stress granules (SGs) and the translational stress response. Aquinnah now reports identifying small molecule compounds that inhibit tau/TIA1 SGs in neuronal cell lines and show strong in vivo efficacy in a classic mouse model of tauopathy.

Method: Compounds identified using high content imaging screening in SH-SY5Y neuroblastoma cells, inducibly over-expressing tau::GFP and TIA1::mKate2, following exposure to stressor.

View Article and Find Full Text PDF

The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.

View Article and Find Full Text PDF

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!