Treatment with gut bifidobacteria improves hippocampal plasticity and cognitive behavior in adult healthy rats.

Neuropharmacology

Institute of Neuroscience, National Research Council, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy.

Published: March 2020

At the present time, gut microbiota inspires great interest in the field of neuroscience as a function of its role in normal physiology and involvement in brain function. This aspect suggests a specific gut-brain pathway, mainly modulated by gut microbiota activity. Among the multiple actions controlled by microbiota at the brain level, neuronal plasticity and cognitive function represent two of the most interesting aspects of this cross-talk communication. We address the possible action of two-months implementation of gut Bifidobacteria using a mixture of three different strains (B-MIX) on hippocampal plasticity and related cognitive behavior in adult healthy Sprague Dawley rats. B-MIX treatment increases the hippocampal BDNF with a parallel gain in dendritic spines' density of hippocampal CA1 pyramidal neurons. Electrophysiological experiments revealed a significant increment of HFS-induced LTP formation on the CA1 hippocampal region in B-MIX treated rats. All these effects are accompanied by a better cognitive performance observed in B-MIX treated animals with no impairments in locomotion activity. Therefore, in adult rats, the treatment with different strains of bifidobacteria is able to markedly enhance neuronal plasticity and the CNS function influencing cognitive behavior, an effect that may suggest a potential therapeutic treatment in brain diseases associated with cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2019.107909DOI Listing

Publication Analysis

Top Keywords

plasticity cognitive
12
cognitive behavior
12
gut bifidobacteria
8
hippocampal plasticity
8
behavior adult
8
adult healthy
8
gut microbiota
8
neuronal plasticity
8
b-mix treated
8
cognitive
6

Similar Publications

Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.

View Article and Find Full Text PDF

Fibromyalgia (FM) is a complex condition marked by increased pain sensitivity and central sensitization. Studies often explore the link between FM and depressive anxiety disorders, but few focus on dysthymia or persistent depressive disorder (PDD), which can be more disabling than major depression (MD). To identify clinical scales and subscales of the Personality Assessment Inventory (PAI) that effectively describe and differentiate the psychological profile of PDD, with or without comorbid MD, in FM patients with PDD previously dimensionally classified by the Millon Clinical Multiaxial Inventory III (MCMI-III).

View Article and Find Full Text PDF

Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory.

View Article and Find Full Text PDF

Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.

View Article and Find Full Text PDF

Background/objectives: A neurobiological framework of bi- or multilingual neurocognitive development must consider the following: (i) longitudinal behavioral and neural measures; (ii) brain developmental constraints across structure and function; and (iii) the development of global multilingual competence in a homogeneous social environment. In this study, we investigated whether multilingual competence yields early changes in executive attention control mechanisms and their underlying neural structures in the frontal-striatal system, such as the dorsal anterior cingulate cortex/pre-supplemental area and the left caudate.

Methods: We employed longitudinal neuroimaging and functional connectivity methods in a small group of multilingual children over two years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!