The etiology of preeclampsia (PE), a serious pregnancy complication, remains an enigma. We have demonstrated that proteinopathy, a pathologic feature of neurodegenerative diseases, is a key observation in the placenta and serum from PE patients. We hypothesize that the macroautophagy/autophagy machinery that mediates degradation of aggregated proteins and damaged organelles is impaired in PE. Here, we show that TFEB (transcription factor EB), a master transcriptional regulator of lysosomal biogenesis, and its regulated proteins, LAMP1, LAMP2, and CTSD (cathepsin D), were dysregulated in the placenta from early and late onset PE deliveries. Primary human trophoblasts and immortalized extravillous trophoblasts (EVTs) showed reduced TFEB expression and nuclear translocation as well as lysosomal protein content in response to hypoxia. Hypoxia-exposed trophoblasts also showed decreased PPP3/calcineurin phosphatase activity and increased XPO1/CRM1 (exportin 1), events that inhibit TFEB nuclear translocation. These proteins were also dysregulated in the PE placenta. These results are supported by observed lysosomal ultrastructural defects with decreased number of autolysosomes in hypoxia-treated primary human trophoblasts. Autophagy-deficient human EVTs exhibited poor TFEB nuclear translocation, reduced lysosomal protein expression and function, and increased MTORC1 activity. Sera from PE patients induced these features and protein aggregation in EVTs. Importantly, trophoblast-specific conditional knockout mice exhibited reduced TFEB expression with increased deposition of protein aggregates in the placenta. These results provide compelling evidence for a regulatory link between accumulation of protein aggregates and TFEB-mediated impaired lysosomal biogenesis and autophagy in the placenta of PE patients. : autophagy related 7; CTSD: cathepsin D; ER: endoplasmic reticulum; EVTs: extravillous trophoblasts; KRT7: keratin 7; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; mSt: mStrawberry; MTORC1: mechanistic target of rapamycin complex 1; NP: normal pregnancy; NPS: normal pregnancy serum; PE: preeclampsia; PES: preeclampsia serum; p-RPS6KB: phosphorylated ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; XPO1/CRM1: exportin 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386603PMC
http://dx.doi.org/10.1080/15548627.2019.1707494DOI Listing

Publication Analysis

Top Keywords

lysosomal biogenesis
12
nuclear translocation
12
tfeb transcription
8
transcription factor
8
ctsd cathepsin
8
dysregulated placenta
8
primary human
8
human trophoblasts
8
extravillous trophoblasts
8
reduced tfeb
8

Similar Publications

Ablation of Hepatic Asah1 Gene Disrupts Hepatic Lipid Homeostasis and Promotes Fibrotic Nonalcoholic Steatohepatitis in Mice.

Am J Pathol

December 2024

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of chronic liver conditions, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to fibrosis/cirrhosis. Here, the GSE163211 data set was analyzed, and Asah1 (encoding acid ceramidase) was identified as a crucial lysosomal gene that positively correlated with NAFLD stages in obese patients. To evaluate the role of Asah1 in the progression of NAFLD, Asah1/Alb mice (hepatocyte-specific deletion of Asah1) and Asah1 floxed (Asah1/wild-type) mice were fed with either a normal diet or a high-fat, high-cholesterol paigen diet (PD) for 20 weeks.

View Article and Find Full Text PDF

African American (AA) women are disproportionally affected by obesity and hyperlipidemia, particularly in the setting of adverse social determinants of health (aSDoH) contributing to health disparities. Obesity, hyperlipidemia, and aSDoH appear to impair Natural Killer cells (NKs). As potential common underlying mechanisms are largely unknown, we sought to investigate common signaling pathways involved in NK dysfunction related to obesity and hyperlipidemia in AA women from under-resourced neighborhoods.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model.

View Article and Find Full Text PDF

Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase.

View Article and Find Full Text PDF

Galactocerebroside Lipid Nanotubes, a Model Membrane System for Studying Membrane-Associated Proteins on a Molecular Scale.

Methods Mol Biol

December 2024

Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France.

Galactocerebroside lipid nanotubes are membrane-mimicking systems for studying the function and structure of proteins involved in membrane shape remodeling, such as in intracellular trafficking, cell division, and migration or involved in the formation of membrane contact sites. They exhibit a constant and small diameter of 30 nm and a length of up to 2 μm. They can be functionalized with lipid ligands, providing a large binding surface for protein without membrane shape remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!