Submerged plants ultimately suffer from shortage in cellular oxygen availability (hypoxia) as a result of impaired gas diffusion underwater. The gaseous plant hormone ethylene is rapidly entrapped in submerged plant tissues and is an established regulator of morphological and anatomical flood-adaptive responses. Multiple recent discoveries suggest that ethylene also plays a crucial role in hypoxia anticipation and metabolic acclimation during plant submergence. Ethylene was shown to accelerate and enhance the hypoxic response through enhanced stability of specific transcription factors (group VII ethylene response factors). Moreover, we suggest that ethylene could play an important role in the induction of autophagy and promote reactive oxygen species amelioration, thereby contributing to enhanced survival during flooding, hypoxia, and reoxygenation stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754284 | PMC |
http://dx.doi.org/10.1111/nph.16378 | DOI Listing |
Anal Chem
January 2025
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
Accurate discrimination of complicated glycosaminoglycans is a challenging but meaningful task for ensuring their safe use in clinics. With the purpose of reducing the production cost of sensor arrays for glycosaminoglycans, three fluorescence turn-on sensors named , , and were readily synthesized by simple alkylation of the pyridyl units of the π-extended AIEgen, namely, tetra-(4-pyridylphenyl) ethylene. The designed sensors are cross-reactive toward tested glycosaminoglycans including heparin, chondroitin sulfate, hyaluronic acid, and dextran sulfate, whose mechanism could be ascribed to the multivalent electrostatic, CH···π, and hydrophobic interactions between the sensors and different glycosaminoglycans to form corresponding fluorescent aggregates.
View Article and Find Full Text PDFJ Org Chem
January 2025
Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
Arynes are important synthetic intermediates that are usually generated under alkaline conditions. We developed a method for generating arynes using two hydroxy compounds as activators. -Triazenylarylboronic acids generate (hetero)arynes when activated by a combination of ethylene glycol, pinacol, and -nitrophenol; these arynes then react with a range of arynophiles under slightly acidic conditions that complement the conventional basic conditions with unique chemoselectivities observed even in the presence of excess hydroxy compounds.
View Article and Find Full Text PDFBackground: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
Zircaloy-4 (Zr-4) is widely used as the cladding material in nuclear power plants (NPPs) due to its excellent corrosion resistance and low neutron absorption cross-section. Under Loss of Coolant Accident (LOCA) conditions, oxidation of Zr-4 can compromise the safety of the NPPs by accelerating hydrogen production. Therefore, enhancing the oxidation resistance of Zr-4 is a critical research focus.
View Article and Find Full Text PDFOpen Life Sci
January 2025
Department of Biology, Pace University, One Pace Plaza, 3rd Floor, New York, 10038, NY, United States of America.
Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vine (Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-based approaches to characterize micro-RNAs (miRNAs) expressed by and from published omics data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!