Objectives: Pancreatic cancer (PC) is highly aggressive with multiple oncogenic mutations. The efficacy of current chemotherapy is poor, and new therapeutic targets are needed. The forkhead box (FOX) proteins are multidirectional transcriptional factors strongly implicated in malignancies. Their expression is consistently suppressed by several oncogenic pathways such as PI3K/AKT signaling activated in PC. A recent study showed that class IIa histone deacetylases (HDAC) can act as a transcriptional suppressor. In this study, we hypothesized that HDAC class IIa inhibition would upregulate FOXO3a expression, thereby inducing its transcription-dependent antitumor effects.

Methods: We confirmed the change of FOXO3a expression and the effect of the cell growth inhibition by HDAC class IIa inhibition in AsPC-1 cells. Because FOXO3a is subject to ubiquitylation-mediated proteasome degradation, we examined the synergistic activation of FOXO3a by HDAC class IIa selective inhibitor TMP269 combined with proteasome inhibitor carfilzomib.

Results: We observed that TMP269 induced FOXO3a expression in a dose-dependent manner and inhibited cell growth in AsPC-1 cells. G1/S arrest was observed. FOXO3a expression was further increased and cell growth inhibition was dramatically enhanced by TMP269 combined with carfilzomib.

Conclusions: Dual inhibition of class IIa HDACs and proteasome could be a promising new strategy for modifying FOXO3a activity against PC.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPA.0000000000001462DOI Listing

Publication Analysis

Top Keywords

class iia
24
hdac class
16
foxo3a expression
16
iia inhibition
12
cell growth
12
foxo3a
8
pancreatic cancer
8
growth inhibition
8
aspc-1 cells
8
tmp269 combined
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!