Highly uniform in-situ cell electrotransfection of adherent cultures using grouped interdigitated electrodes.

Bioelectrochemistry

State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China. Electronic address:

Published: April 2020

Cell electrotransfection is an effective approach for transferring exogenous molecules into living cells by electric stimulation. The existing in-situ electrotransfection micro-devices for adherent cells exhibit the drawbacks of low transfection efficiency and low cell viability. An important reason for these drawbacks is the unequal exposure of cells to the electric field. It was found that cells growing directly below the energized electrodes experience a much lower electric field intensity when compared to the cells growing below the spacing area of the electrodes, resulting in low transfection with a strip-like pattern. Therefore, a new strategy for the in-situ electrotransfection of adherent cells growing in a standard 12-well plate is proposed in this study. By sequentially energizing electrodes arranged in a nested and non-contact manner, the cells were exposed to an overall equal intensity of the electric field, and thus a higher efficiency of transfection was achieved. The seven cell lines transfected using this method exhibited high transfection efficiency and high cell viability, demonstrating the potential for studying gene function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2019.107435DOI Listing

Publication Analysis

Top Keywords

electric field
12
cells growing
12
cell electrotransfection
8
electrotransfection adherent
8
cells electric
8
in-situ electrotransfection
8
adherent cells
8
low transfection
8
transfection efficiency
8
cell viability
8

Similar Publications

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF

Electrocatalytic and Photocatalytic N Fixation Using Carbon Catalysts.

Nanomaterials (Basel)

January 2025

Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.

View Article and Find Full Text PDF

As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.

View Article and Find Full Text PDF

Flat-Band AC Transport in Nanowires.

Nanomaterials (Basel)

December 2024

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

The electronic states in flat bands possess zero group velocity and null charge mobility. Recently, flat electronic bands with fully localized states have been predicted in nanowires, when their hopping integrals between first, second, and third neighbors satisfy determined relationships. Experimentally, these relationships can only be closely achieved under external pressures.

View Article and Find Full Text PDF

A stacked nanocomposite zinc-tin oxide/single-walled carbon nanotubes (ZTO/SWNTs) active layer was fabricated for thin-film transistors (TFTs) as an alternative to the conventional single-layer structure of mixed ZTO and SWNTs. The stacked nanocomposite of the solution-processed TFTs was prepared using UV/O treatment and multiple annealing steps for each layer. The electrical properties of the stacked device were superior to those of the single-layer TFT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!