Release of bud dormancy is a prerequisite for the growth resumption and production in perennial plants such as tree peony. DNA methylation plays a pivotal role in regulating gene expression. In this study, combination of morphologic observation and DNA methylation analysis indicated that 5-azacytidine (5-azaC) application for 7 d declined 5 mC quantities and promoted dormancy release. After 5-azaC treatment, total 174,341 unigenes and 1818 differentially expression genes (DEGs) were obtained by RNA-seq, of which there were 1194 DEGs after 1 d 5-azaC treatment (AD1 vs CD1), and 624 DEGs after 7 d (AD7 vs CD7), respectively. The KEGG pathway analysis identified that totally 10 DEGs annotated in DNA replication pathway were enriched when AD7 compared with CD7. Furthermore, the expression patterns of several DEGs by real-time quantitative RT-PCR were consistent with that of RNA-seq data. 5-azaC application significantly decreased the expression levels of DNA methyltransferase genes, PsCMT3, PsMET1 and PsDRM2, and increased the transcript of demethylase gene PsROS1. Simultaneously, total methyltransferases activity decreased, and demethylase activity was induced by 5-azaC. In summary, application of 5-azaC inhibited the expression of the genes related to growth and development in short-term, indicating a possible toxic effect to plant, and its long-term effect was to induce hypomethylation by increasing demethylase genes transcripts and decreasing the expressions of methyltransferase genes, and then activate cell cycle, DNA replication and glycol-metabolism processes, which subsequently accelerated dormancy release. All these would provide a new strategy to further understand the molecular mechanism of dormancy release in tree peony.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2019.12.010 | DOI Listing |
BMC Biol
January 2025
College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
Background: Grape (Vitis vinifera) crops encounter significant challenges in overcoming bud endodormancy in warm winter areas worldwide. Research on the mechanisms governing bud dormancy release has focused primarily on stress regulation; however, cell wall regulation of bud meristem regrowth mechanism during the dormancy release remains obscure.
Results: In this study, transmission electron microscopy revealed significant changes in the grape bud cell wall following hydrogen cyanamide (HC) treatment, accompanied by an increase in β-1,3-glucanase activity.
Int J Mol Sci
December 2024
Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.
View Article and Find Full Text PDFJ Bacteriol
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.
Plant Cell Environ
January 2025
Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
Curr Issues Mol Biol
December 2024
Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, China.
During the dormant period of peach trees in winter, flower buds exhibit weak cold resistance and are susceptible to freezing at low temperatures. Understanding the physiological and molecular mechanisms underlying the response of local peach buds to low-temperature adversity is crucial for ensuring normal flowering, fruiting, and yield. In this study, the experimental materials included the conventional cultivar 'Xia cui' (XC) and the cold-resistant local resources 'Ding jiaba' (DJB) peach buds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!