N, P and S co-doped carbon materials derived from polyphosphazene for enhanced selective U(VI) adsorption.

Sci Total Environ

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 639798, Singapore. Electronic address:

Published: March 2020

Herein, the precursor polyphosphazene was synthesized by the polymerization of hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS). The adsorbent which was codoped with N, P and S (amidate-CS) was developed from the precursor by using the carbonization method. The images of Scanning electron microscope (SEM) and Transmission electron microscope (TEM) indicate that the amidate-CS possessed porous graphene-like carbon lamellar structure. The excellent behaviors with respect to kinetics (120 min for equilibrium) and thermodynamics (maximum removal of 290 mg/g when pH was at 6.0) revealed the outstanding performance of amidate-CS in removing U(VI), which is due to the functional groups and strong covalent bonds between heteroatoms and uranyl ions. The adsorption of amidate-CS followed the pseudo-second-order kinetic and Langmuir adsorption model. The thermodynamic parameters indicate that the process was spontaneous and endothermic. The adsorption and desorption efficiency of amidate-CS had a slight decrease after five cycles, indicating excellent regeneration performance. Overall, the amidate-CS is a prospective candidate for highly selective U(VI) removing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136019DOI Listing

Publication Analysis

Top Keywords

selective uvi
8
electron microscope
8
performance amidate-cs
8
amidate-cs
6
co-doped carbon
4
carbon materials
4
materials derived
4
derived polyphosphazene
4
polyphosphazene enhanced
4
enhanced selective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!