[Effect of Different Passivating Agents on the Stabilization of Heavy Metals in Chicken Manure Compost and Its Maturity Evaluating Indexes].

Huan Jing Ke Xue

Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.

Published: January 2020

We explore the effects of different passivating agents on livestock manure treatment by using chicken manure and straw as raw materials and thermophilic rapid fermentation. We investigate the effects of sepiolite (SE), calcium magnesium phosphate fertilizer (NP), biochar (BI), compounds of sepiolite plus calcium magnesium phosphate fertilizer (S+N), sepiolite plus biochar (S+B), calcium magnesium phosphate fertilizer plus biochar (N+B), and sepiolite plus calcium magnesium phosphate fertilizer and biochar (SNB) on the physical and chemical characteristics, heavy metal fraction and distribution, and organic matter content in chicken manure compost. The results showed that the addition of different passivating agents significantly increased the pH in chicken manure organic fertilizer (<0.05). The seed germination rate was increased after applying of passivation agents, being>80%, and the germination inhibition rate decreased accordingly, whereas the values of electric conductivity (EC) and organic carbon were inhibited. The total nitrogen content and carbon/nitrogen ratio (C/N) were lower than of those before composting, and all of the indicators reached the standard of organic fertilizer maturity. However, differences among the groups after composting were that the pH increase in the compounding treatment was comparatively higher, and that the EC decreased significantly under the treatment of the single sepiolite and calcium magnesium phosphate, whereas the total nitrogen content and C/N ratio of organic carbon were not significantly different in each group. Although the total amount of heavy metals in our organic chicken manure fertilizer increased due to a concentration effect, the proportion of exchangeable heavy metals in the fertilizer decreased, and while the ratio of the residual heavy metals increased. The passivation effect on heavy metals under combined treatments of different materials was better than that of a single agent, and the SNB treatment had the best effect on the passivation of Ni, Zn, As, and Pb. After composting treatment, the concentrations of humic substances (HS) and humic acid (HA) increased significantly (<0.05), and the highest concentrations increased by 19.8% and 78.9%, respectively. The amount of fulvic acid (FA) decreased by 4.47%-20.11% compared with the initial conditions. Infrared spectroscopy analysis showed that the small molecular substances of polysaccharides increased after composting. In summary, the addition of a passivation agent can promote the heavy metal passivation in chicken manure organic fertilizers to potentially render the compost as harmless.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201906121DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
chicken manure
20
calcium magnesium
20
magnesium phosphate
20
sepiolite calcium
16
phosphate fertilizer
16
passivating agents
12
fertilizer biochar
12
manure compost
8
fertilizer
8

Similar Publications

This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg-ATPase and Ca-ATPase activities, malondialdehyde and O contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast.

View Article and Find Full Text PDF

Soil contamination by heavy metals (HM) is a critical area of research. Traditional methods involving sample collection and lab analysis are effective but costly and time-consuming. This study explores whether geostatistical analysis with GIS and open data can provide a faster, more precise, and cost-effective alternative for HM contamination assessment without extensive sampling.

View Article and Find Full Text PDF

Alterations caused by human activities in the environment, such as dredging, modify the physicochemical conditions and affect the habitat. Maintenance dredging that allows large vessels access to inland ports is a recurring disruptive action. The study aimed to evaluate, during a maintenance dredging operation in a port area of the Paraná River, the modifications in the structure of the river, the presence of contaminants and bacterial organisms.

View Article and Find Full Text PDF

Backgrounds: Venous Thromboembolism (VTE) is a disease entity comprising Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE). VTE events increase the mortality rate of patients with cancer receiving platinum-based chemotherapy. Soluble P-Selectin, Neutrophil Extracellular Traps (NET), and myeloperoxidase (MPO) are risk factors associated with DVT in malignancy patients receiving platinum-based chemotherapy.

View Article and Find Full Text PDF

Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!