This study investigates the elemental characteristics and sources of aerosol fine particulate matter (PM) samples obtained from Pingdingshan, Suizhou, and Wuhan, Central China, in June 2017. Thirteen kinds of elements (Ti, Zn, Cu, Cr, As, Pb, Fe, Ni, Se, V, Sb, Cd, and Co) were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and three source identification methods-enrichment factor, principle component analysis and multiple linear regression (PCA-MLR), and backward trajectory clustering-were applied. The results showed that Zn was the highest trace element in PM in samples from Pingdingshan, Suizhou, and Wuhan, and that the concentration of As exceeded the annual limit of Chinese air quality standards (GB 3096-2012). Concentrations of Pb and Cd in PM in samples from the three cities during the summer were low. The enrichment factor coefficients for Se, Sb, Cd, As, Cu, and Zn exceeded 10, which suggests that summer pollution from human activities was serious, for example, the enrichment factor coefficient for Se was>600. PCA-MLR and backward trajectory clustering analysis results showed that the main pollution sources in Pingdingshan during the summer were industrial fuel oil (57.90% of total), traffic pollution (24.40%), coal combustion (6.10%), and mine soil (11.60%). The main pollution source in Suizhou was fuel, which contributed 54.30% of the total. Wuhan was mainly affected by industrial emissions (60.80% of the total) and motor vehicle pollution (39.20%). Hence, Wuhan and Suizhou were mainly affected by local source emissions, whereas Pingdingshan was jointly affected by local emissions and regional inputs during the summer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201904024 | DOI Listing |
Materials (Basel)
December 2024
Department of Civil and Environmental Engineering, Brunel University London, London UB8 3PH, UK.
To investigate the micro-mechanism of the erosion of hydrated calcium silicate (C-S-H gel) in a sulfate environment, a solid-liquid molecular dynamics model of C-S-H gel/sodium sulfate was developed. This model employs molecular dynamics methods to simulate the transport processes between C-S-H gel and corrosive ions at concentrations of 5%, 8%, and 10% sodium sulfate (NaSO), aiming to elucidate the interaction mechanism between sulfate and C-S-H gel. The micro-morphology of the eroded samples was also investigated using scanning electron microscopy (SEM).
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China.
Urban topsoil is not only an essential part of the urban ecosystem, but also a powerful carrier of pollutants in the urban environment. In this paper, 130 topsoil samples from urban area of Xinyang in central-eastern China were selected, the aim is to quantitatively investigate the concentrations, pollution levels, and sources apportionment of 8 heavy metals (HMs, encompassing arsenic (As), cobalt (Co), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni), vanadium (V), and zinc (Zn)) via geochemical method. The main conclusions are as follows.
View Article and Find Full Text PDFAm J Perinatol
November 2024
Department of Obstetrics and Gynecology, The Genetics and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Objective: This study aims to assess the feasibility of detecting and diagnosing Duchenne muscular dystrophy (DMD) during prenatal screening for chromosome abnormalities using cell-free fetal DNA extracted from peripheral blood samples of pregnant women.
Study Design: Two pregnant women identified as high risk through noninvasive prenatal testing (NIPT) underwent amniocentesis to obtain fetal cells. Subsequent fetal chromosomal karyotyping was conducted, and genomic DNA from fetal cells was extracted for copy number variation sequencing (CNV-Seq) analysis, complemented by multiplex ligation-dependent probe amplification (MLPA) to detect deletions or duplications within the DMD gene.
PLoS One
October 2024
School of Chemical & Environmental Engineering, Pingdingshan University, Pingdingshan, China.
Vegetated concrete substrate (VCS) is a kind of ecological cemented soil, which has very wide application prospect in high and steep rock slope eco-protection. Cement is an important component of VCS, but it has high energy consumption and environmental pollution. Fiber reinforcement plays an positive role in improving the mechanical properties of soil, and its use as a substitute for cement content in VCS under the condition of equal strength is rarely investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!