[Size Distributions of Different Carbonaceous Components in Ambient Aerosols].

Huan Jing Ke Xue

Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China.

Published: September 2019

It is important to obtain the size distribution of carbonaceous components in aerosols for studying the formation and transformation mechanisms and radiation characteristics of regional aerosols. However, only a few studies on the size distribution of aerosol carbonaceous fractions have been conducted in Beijing. In this study, a Micro-Orifice Uniform Deposit Impactor (MOUDI)-120 sampler was used to collect size-resolved aerosol samples in three seasons in Beijing, and the concentrations of different types of carbonaceous fractions were analyzed. Furthermore, the size distribution, characteristics, sources, and interrelationship of each carbonaceous component in different seasons and under different pollution levels were systematically studied. The results show that the carbonaceous components were concentrated mainly in fine particles, and the proportion of carbonaceous components in fine particles in autumn and winter was higher than that in summer. The carbonaceous components are distributed in two main modes:accumulation mode and coarse mode. Organic carbon fraction 1 (OC1) and OC2 were distributed mainly in the accumulated mode, with a higher proportion in the range of 0.056-0.56 μm, and OC3+OC4 was more abundant in the coarse mode. The concentration of Soot-elemental carbon (EC) was low but was highest in the 0.10-0.18 μm size range, which indicates that the EC emitted by high temperature combustion was distributed mainly in the ultra-fine particle size range. The Char-EC concentration was much higher, accounting for the majority of EC. The distribution appearances of the main carbonaceous components were essentially the same in the daytime and at night. Summer and winter were more conducive to the formation of SOC, and the OC/EC ratio was significantly higher than that in autumn. The OC/EC values varied greatly in different particle sizes because the water-soluble organic compounds (WSOC) were distributed mainly in the range of 0.056-0.10 μm, with significantly higher OC/EC values than other particle sizes. Sunlight and high temperature were beneficial to the oxidation of gaseous organic matter to SOC, resulting in the OC/EC ratio in summer in daytime to be significantly higher than that at night. Among the carbonaceous components, EC1 and OC1 had the strongest interrelation. In addition, EC1 also had stronger interrelation with potassium.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201903057DOI Listing

Publication Analysis

Top Keywords

carbonaceous components
28
size distribution
12
carbonaceous
10
carbonaceous fractions
8
fine particles
8
coarse mode
8
size range
8
high temperature
8
soc oc/ec
8
oc/ec ratio
8

Similar Publications

Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits.

View Article and Find Full Text PDF

Nitrogen doping turns carbonaceous materials into fast-reacting catalysts for reductive dechlorination.

Environ Pollut

January 2025

Department of Plant and Environmental Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Electronic address:

Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.

View Article and Find Full Text PDF

Recovery of Nd and Dy from E-Waste Using Adsorbents from Spent Tyre Rubbers: Batch and Column Dynamic Assays.

Molecules

December 2024

LAQV/REQUIMTE, Associated Laboratory for Green Chemistry, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes.

View Article and Find Full Text PDF

Recent Advances of the Effect of HO on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies.

Environ Sci Technol

January 2025

Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.

Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of HO and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of HO on VOC oxidation.

View Article and Find Full Text PDF

Component analysis and source identification of atmospheric aerosols at the neighborhood scale in a coastal industrial city in China.

Environ Pollut

December 2024

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6-202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%-60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!