Biochar is widely used in environmental pollution remediation, soil improvement, and biotransformation of waste. However, the leachable substances within biochar may leach out during the application process, causing detrimental effects to the reaction system and the environment. Here, the simulated solutions (distilled water, buffer salt solution, methanol, and humic acid solution) at different stages of anaerobic digestion were used as the extracting agents, and high-resolution liquid chromatography-mass spectrometry was used to study the dissolved organic composition of biochar leachates. A total of 536 effective substances were detected in the biochar leachates, of which 100 substances were highly matched to the standard substance database. The molecular weights of these 100 substances, which included phenols, aromatic acids, aromatic aldehydes and ketones, aliphatic acids, and other substances, were in the range of 109-458 and averaged 290.2. The buffer salt solution, which is commonly used for anaerobic culturing, extracted three additional aliphatic acids and four additional aromatic substances from biochar than distilled water as used in traditional research methods; the leachate of methanol contained the most diverse compounds-71 in total-including a large number of phenols and organic acids. Some humic acid organic substances are adsorbed by biochar during the leaching by humic acid, including alcohols and aliphatic acids, but humic acid still promoted the leaching of phenolic substances, while the total number of substances that were detected was reduced by 41.7%.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201901143DOI Listing

Publication Analysis

Top Keywords

humic acid
16
aliphatic acids
12
substances
9
dissolved organic
8
substances biochar
8
distilled water
8
buffer salt
8
salt solution
8
biochar leachates
8
substances detected
8

Similar Publications

The increasing prevalence of cadmium (Cd)-contaminated agricultural soils threatens the safe production of maize ( L.). To decrease the Cd accumulation in maize, a pot experiment was conducted to study the effects of humic acid on the growth and Cd uptake of maize seedlings.

View Article and Find Full Text PDF

The release of algal organic matter (AOM) during seasonal algal blooms increases the complexity and heterogeneity of natural organic matter (NOM) in water sources, altering its hydrophilic-hydrophobic balance and posing significant challenges to conventional water treatment processes. This study aims to verify whether the (Granular activated carbon) GAC selected for the adsorption of NOM in sand filtration effluent can adapt to water quality fluctuations caused by AOM release, and identify the criteria influencing GAC adsorption performance. Results indicated that external surface area, mesopore volume, pore size and surface functional groups were key indicators of GAC adsorption performance.

View Article and Find Full Text PDF

This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.

View Article and Find Full Text PDF

As a crucial component of soil organic matter, humic acid (HA) persists in soil and exert a complex interaction with hydrophobic organic pollutants, yet its specific role still remains unclear. In this study, HA was obtained from weathered coal via alkaline dissolution and acidic precipitation for the adsorption of benzo[a]anthracene (BAA). Subsequently, an aging simulation was employed to assess its long-term performance.

View Article and Find Full Text PDF

Insights into nitrogen metabolism and humification process in aerobic composting facilitated by microbial inoculation.

Environ Res

January 2025

College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, Guangxi, China. Electronic address:

To enhance the retention of compost nutrients, specifically in nitrogen metabolism and humification, compound microbial agents were added during the aerobic composting of bagasse pith and buffalo manure. The introduction of the microbial agent successfully colonized the mixture, boosted the degradation capacity of organic matter, and facilitated the formation of nitrogenous substances and humic substances (HSs). The incorporation of a composite microbial inoculum led to a substantial rise in total Kjeldahl nitrogen (TKN) by 62.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!