Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The diversity of bacterial communities and their metabolic function in the waters of the Weihe River Basin are of great significance for water pollution remediation, ecological restoration, and water quality assessment. Illumina MiSeq high-throughput sequencing technology was applied to study the bacterial community distribution characteristics after the comprehensive treatment of the Shaanxi part of the Weihe River Basin. Furthermore, the correlation between the bacterial communities and environmental factors was analyzed by redundancy analysis (RDA), and the PICRUSt method was adopted to evaluate the ecological function of the bacterial communities. The results showed that Proteobacteria, Actinobacteria, Cyanobacteria, and Bacteroidetes were the main bacterial communities in the water, accounting for 85% of the total microbial community. Additionally, these bacteria showed a significant positive correlation (=0.02, <0.05) with the TP, NO-N, NO-N, and TN. The bacteria community richness of water samples collected in Zaohe River was the lowest of all samples, while which in the downstream of the junction of Bahe river and Weihe river was the highest. In addition, water in the Weihe River Basin had great impact on the endocrine systems of aquatic organisms, and also had a possibility of infectious diseases for humans. Our research provides a theoretical basis for the safe and sustainable development of the water environment in the Weihe River Basin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201810072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!