A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Environmental Response and Ecological Function Prediction of Aquatic Bacterial Communities in the Weihe River Basin]. | LitMetric

[Environmental Response and Ecological Function Prediction of Aquatic Bacterial Communities in the Weihe River Basin].

Huan Jing Ke Xue

State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Institute of Water Resources and hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China.

Published: August 2019

The diversity of bacterial communities and their metabolic function in the waters of the Weihe River Basin are of great significance for water pollution remediation, ecological restoration, and water quality assessment. Illumina MiSeq high-throughput sequencing technology was applied to study the bacterial community distribution characteristics after the comprehensive treatment of the Shaanxi part of the Weihe River Basin. Furthermore, the correlation between the bacterial communities and environmental factors was analyzed by redundancy analysis (RDA), and the PICRUSt method was adopted to evaluate the ecological function of the bacterial communities. The results showed that Proteobacteria, Actinobacteria, Cyanobacteria, and Bacteroidetes were the main bacterial communities in the water, accounting for 85% of the total microbial community. Additionally, these bacteria showed a significant positive correlation (=0.02, <0.05) with the TP, NO-N, NO-N, and TN. The bacteria community richness of water samples collected in Zaohe River was the lowest of all samples, while which in the downstream of the junction of Bahe river and Weihe river was the highest. In addition, water in the Weihe River Basin had great impact on the endocrine systems of aquatic organisms, and also had a possibility of infectious diseases for humans. Our research provides a theoretical basis for the safe and sustainable development of the water environment in the Weihe River Basin.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201810072DOI Listing

Publication Analysis

Top Keywords

bacterial communities
20
weihe river
12
ecological function
8
river basin
8
bacterial
6
communities
5
[environmental response
4
response ecological
4
function prediction
4
prediction aquatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!