The effect of external pollution inputs on phosphorus recovery, transport, and transformation in newborn surface layers from sediment dredging remains unclear. Clarifying this issue is important for the control and management of external pollution loads at the watershed scale, particularly after the implementation of sediment dredging activities. In this study, sediments in Meiliang Bay of Lake Taihu were investigated. In-situ dredging simulation was used to study the transport and transformation of phosphorus at the sediment-water interface, before and after dredging, with either external or non-external particulate matter inputs, and to explore the effect of dredging on phosphorus release as part of internal loading. The results showed that limiting the inputs of external particulate matter and dredging had positive impacts on the control of TP and TN in the sediments. Dredging significantly reduced the content of potentially mobile phosphorus (Mobile-P) in surface sediments. Iron-bound phosphorus (Fe-P) was the first main component of the reduced Mobile-P and Organic phosphorus (Org-P) was the second. The content of Loose-bound phosphorus (Lb-P) was less than 1‰ of the total phosphorus. After 210 days of the experiment, the concentration of PO-P in the pore water of the dredged treatment was lower than that of the undredged treatment, and this difference was more pronounced without external particulate matter input. Furthermore, the concentration of PO-P in the pore water of the dredged treatment (without external particulate matter input) was maintained at a low level, while this first increased and then subsequently decreased for the other treatments. The concentrations of PO-P in pore water were positively correlated with Fe-P in the corresponding sediment layers. Source-sink transition took place between winter and spring, leading to the switch in sediment functioning as a sink to a source. The results indicated that dredging could reduce the release rate of internal phosphorus from sediments. Furthermore, limiting the input of external particulate matter plays an important role in facilitating the control of internal phosphorus loading by dredging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201901222 | DOI Listing |
ISME Commun
January 2024
Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China.
Transport of organic matter (OM) occurs widely in the form of animal and plant detritus in global oceans, playing a crucial role in global carbon cycling. While wood- and whale-falls have been extensively studied, the process of OM remineralization by microorganisms remains poorly understood particularly in pelagic regions on a global scale. Here, enrichment experiments with animal tissue or plant detritus were carried out in three deep seas for 4-12 months using the deep-sea incubators.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:
Bioaerosols significantly influence air quality and human health. This study investigated the diversity, structure, and interaction of bacterial communities in particulate matter (PM) across four seasons in Xi'an. The results revealed that operational taxonomic units (OTUs) were the highest in autumn, reaching levels comparable to those in winter, but were 3.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disease, that accounts for 50-75% of all dementia cases. Evidence demonstrates the link between particulate matter (PM) exposure and AD. However, there are still considerable research gaps.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).
View Article and Find Full Text PDFSci Total Environ
January 2025
Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!